How to Write a CS Paper

Voicu Popescu
Overview

• A lecture on how to write CS research papers
• A systematic approach—a recipe, a formula, an algorithm
Motivation

• Writing a paper is difficult
 – Complex topic
 – New results

• Paper writing rarely taught explicitly in graduate school
 – Learned by reading papers
 – Learned through painful trial and error
Misconceptions about paper writing

• "Writing a paper takes a couple of hours"
 – No. It takes an experienced writer a week w/ sleep and 36h w/o sleep to write a paper.

• "Writing a paper takes literary talent"
 – No. Keep poetry and metaphors out of the paper.

• "Writing a paper is a mysterious, amorphous process"
 – No. There is a method for writing papers.

• "English proofreading services can fix a poorly written paper"
 – No. English proofreading fixes language problems, not exposition problems.
When to start writing

• Option 1: once you have proof of concept
 – Pro: plenty of time available for writing
 – Con: not all results available, writing has to anticipate results, writing cannot accurately emphasize strengths demonstrated in results
 – Recommended for conference submissions, and for novice writers
 – Might require a second writing pass (i.e. a major revision) to fine tune paper to final results
When to start writing

• Option 2: once all results are obtained
 – Pro: writing reflects results with high fidelity, including in abstract and in introduction
 – Con: little time available for writing, due to imminent (conference) deadline
 – Recommended for conference submissions for experienced writers, and for journal submissions (no hard deadline)
 – *Warning*: can lead to submission delays
Formatting

• Use template provided by targeted venue
 – Word
 – LaTex

• Format from the beginning
 – Accurate estimate of paper length
 – Avoids formatting nightmares close to the deadline
Tell a story

• A well written paper tells a story
• The story has to
 – flow from the “introduction” section all the way to the “conclusions and future work” section
 – be easy to read
 – be exciting
 – clearly state contributions
 – not overstate contributions
 – provide sufficient detail for reproducibility
 – not follow the work timeline proportionally
Tell a story

• The story has to
 – reiterate important points (title, abstract, introduction, method, and conclusions) without being repetitive
 – be consistent, no contradictions
 – contain no ambiguities; no “would”, “could”, “should”, “might”; everything described outside the future work section should have been actually implemented; no speculations
Figures

• Whenever something is hard to describe, use a figure (i.e. diagram, image, graph)

• Have enough figures, with detailed captions
 – Someone looking only at figures should get the main idea of the paper

• Figures should be of very high quality
 – Use professional software, e.g. Visio
 – Be prepared to invest time (multiple hours, revisions)
 – Start with canvas of final size
 – 8pt font in the final paper layout (no scaling)
Philosophy

• Your method is assumed to be bad until you prove that it is good
• Your paper is assumed to be rejected until you prove it has to be accepted
• It is not enough to not provide good reasons for the paper to be rejected
• You have to provide good reasons for the paper to be accepted
Paper components

- Title
- Authors list
- Abstract
- Keywords
- Introduction
- Prior work
- Method overview
- Method details 1
- Method details 2
- ...
Title

• Important
 – First thing a reader sees
 – Together with abstract and keywords used to decide reviewers

• Desired qualities
 – Informative
 – Accurate
 – Not too long
 – Catchy, easy to remember, impressive

• Formatting
 – Capitalize every word except for prepositions
 – “Reflected-Scene Impostors for Realistic Reflections at Interactive Rates”
Title architecture

• Most frequently
 – Nickname: New-Thing for What
 • “The WarpEngine: An Architecture for the Post-Polygonal Age”
 • “GEARS: A General and Efficient Algorithm for Rendering Shadows”
 – New-Thing for What
 • “Simplification of Node Position Data for Interactive Visualization of Dynamic Datasets”
 • “Reflected-Scene Impostors for Realistic Reflections at Interactive Rates”
 – What by (using) New-Thing
 • “CAD Visualization by Outsourcing”
Title architecture

• New-Thing
 – A new paradigm; radically new approach to solving a problem or set of problems
 – “Forward Rasterization”
 – “Camera Model Design”

• What
 – A breakthrough: finally a solution to a long standing problem
 – “Efficient Large-Scale Acquisition of Building Interiors”
Authors list

• Typically sorted on contribution
 – Rarely done alphabetically (in our field)
• First author should
 – Understand all the work reported in paper
 – Be able to present the paper
 – Know how every aspect of the method works
• Collaborators to include
 – Anyone who has contributed a significant idea
 – This leaves out those whose contribution is exclusively in the implementation, in making figures, or in collecting data (they go in acknowledgment section)
Abstract

• The longer type of abstract
 – Two paragraphs
 – First paragraph
 • Problem
 • Problem importance
 • Why problem is difficult
 • Limitations of state of the art
 – Second paragraph
 • Brief description of method contributed by paper
 • Method scope (i.e. input for which it works, assumptions)
 • Brief description of method evaluation
 • Results highlights
Abstract

• The shorter type of abstract
 – Just the second paragraph of the longer type
 • Brief description of method contributed by paper
 • Method scope (i.e. input for which it works, assumptions)
 • Brief description of method evaluation
 • Results highlights
Abstract

• Length of abstract is usually regulated
• Abstracts are expected to be dense
 – Start from something twice as long and condense
 – Tip: you could write the introduction first and then condense that into an abstract
Keywords

• Used to determine reviewers
• Used for readers to find your paper in future
• Some conferences / organizations (e.g. ACM) provide list to choose from
 – Choose carefully
 – Add your own if at all possible
• Sort based on generality
 – Usually ascending order
Paper components

- Title
- Authors list
- Abstract
- Keywords
- Introduction
- Prior work
- Method overview
- Method details 1
- Method details 2
- ...
Introduction

- The **most important** part of the paper
 - Often the only part of the paper a reader/reviewer will read closely from beginning to end
 - Many reviewers decide on acceptance by the end of the introduction and use the other sections as a source of evidence for their decision
 - Be prepared to spend a long time writing it (one day) and revising the introduction (throughout the writing process)
Introduction formula

• Five plus two paragraphs
• Together with title, teaser figure, author list, keywords, abstract should cover at most the first two pages of paper.
• Paragraph 1
 – Problem
 – Problem importance
Introduction formula

• Paragraph 2
 – Why is problem hard?
 – Summary of prior work approaches and of their shortcomings
 • OK to have references
 • I prefer not to have references
 – Ask reader/reviewer to extend their trust until prior work section where all prior work claims are backed up with references
 – This allows reader/reviewer to focus on story
Introduction formula

• Paragraph 3
 – Details on shortcomings of prior art that take similar approach as taken by present paper
 – What are the problems that need to be solved, for the approach to succeed?
 – This should lead to insight that created method described in current paper. Clearly understanding the problem, in detail, leads to inspiration, to good idea.
Introduction formula

• Paragraph 4
 – Introduce method presented by paper
 – Start with “insight”, “inspiration”, “key observation”
 – No implementation details, just high level ideas and concepts used
Introduction formula

• Paragraph 5
 – Summary of examples where method was tested
 – Summary of results
 – If you have an accompanying video, mention it explicitly—otherwise reviewers might miss the video!
Introduction formula

• Paragraph 6 (optional)
 – List of contributions
 – At least two, at most three, bullets recommended
 – Simplifies reviewer’s job finding the contributions (they are asked by the review form to list contributions)
 – Well written paragraphs 4 and 5 could make this paragraph unnecessary
 – Reviewers could be annoyed by the list of contributions
 • contributions of a well written strong paper are self-evident
 • explicit list of contributions can be interpreted as an attempt to manipulate reviewers
Introduction formula

• Paragraph 7 (optional)
 – Paper organization (list section titles and what each section does)
 – More useful when there are multiple “method details” section (i.e. longer papers)
 – Usually omitted for shorter papers
Prior work

• One of the most boring sections to a reader
 – Typically very poorly written

• Prior work section should be
 – Well organized
 – Comprehensive
 – Relevant to paper at hand
 – Fair
Prior work

• Convince reviewers that are expert in the area that you too are an expert in the area
• Help reviewers outside the area catch up on the state of the art
• Nothing worse than a poorly written prior work section
 – No knowledge of prior work
 – No understanding of prior work
 – No good delimitation of the contributions of the current paper
Annotated bibliography

• You write a little bit of the prior work section every time you read a paper
 – Collect an annotated bibliography
 – For every paper you read
 • Collect the citation
 • Write a summary paragraph
 • Write a strengths paragraph
 • Write a weaknesses/limitations paragraph
 – The annotated bibliography will be an invaluable help when writing prior work sections, your thesis, etc.
• Start from recent major conferences and venues
• Take one step back (i.e. look at their references)
• Take several steps back for the most relevant work
Prior work

• Organize prior work section on approaches
 – Define each approach
 – Cite early, recent, and best known paper for each approach
 – For each paper cited write a sentence
 • On what it does
 • Another one on what it excels at
 • And another one on its shortcomings

• End approach discussion with summary of strengths and weaknesses
 – If your paper takes different approach, contrast approaches
 – If your paper takes same approach, contrast your method with other methods in the approach
 – Devote more space to the approach to which your method belongs
Prior work

• Do not reuse prior work from other papers
 – Prior work section should be designed and detailed for the present paper

• Prior work section should be about one page
 – You never lose points for too many references
 – You can lose points if references are not enough
 – However, the total length of the paper has to be commensurate to contribution
 – Prior work can be condensed
 – Do not use a reference as a noun
 • “[2] describes a method”, “same approach as in [2]” are incorrect
Paper components

- Title
- Authors list
- Abstract
- Keywords
- Introduction
- Prior work
 - Method overview
- Method details 1
- Method details 2
- ...
- Results and discussion
- Conclusions and future work
- Acknowledgments
- References
- Appendices
- Video
Overview

• Gives a high-level view of your entire method
• Use a diagram
 – Blocks for the various stages of your method
 – Arrows indicating the data flow
 – Label arrows with the type of data
• Use a pseudocode description of the main steps of your algorithm
• Each stage or step is later described in a section
 – Refer to the future section
Overview

• Gives reviewers essential help
 – Reviewers volunteer their time
 – You are responsible for making their job as easy as possible
 – Do not expect reviewers to spend hours and hours trying to make sense of your poorly written paper
 – Reviewers will simply say in the review: “I tried but I could not understand the paper, and I am an expert in the area; what chances does a regular reader have?”
Method details k

• These sections are the easiest ones to write
 – It’s your work, it’s what you did, you know it all too well
 – You love what you did, and you can’t wait to tell people about it

• Level of detail
 – Sufficient for a skilled graduate student to reproduce your work
 – Not overly verbose—concise and to the point
 – No innovation should be left unexplained
 – No simple implementation details should be provided
Method details k

• Use references when you use an existing tool
 – Make sure you explain what the algorithm/tool does
 – OK to summarize (in one sentence) how the tool does it to make paper self contained

• Use figures

• Use present tense
Method details k

• Remember, do not use “can, could, should, would”
 – Nothing worse than giving the reviewer an uneasy feeling that some of the work described is only proposed and that it was not actually done

• Do not overuse “very”, “highly”, they end up weakening what is claimed
 – E.g. “very accurate” is less accurate than “accurate”
Method details k

• Double-blind review
 – You cannot disclose your identity
 – OK to reference your prior work
 – Use third person
 • “they did this and that” not “we did this and that”
 – Do not include 10 references to your work
 • It will amount to a blatant disclosure of your identity
Paper components

- Title
- Authors list
- Abstract
- Keywords
- Introduction
- Prior work
- Method overview
- Method details 1
- Method details 2
- ...

- Results and discussion
- Conclusions and future work
- Acknowledgments
- References
- Appendices
- Video
Results and discussion

• You talked the talk, now you walk the walk

• Everything you promised has to be substantiated by results
 – High quality should be supported by high quality
 – Interactive rates should be supported by interactive rates
 – Overcoming shortcomings of prior art should be supported by a favorable comparison to prior art
 – Any discrepancy substantially weakens the paper
Results

• First paragraphs
 – Describe applications and scenes where you tested your method
 – Describe machines on which you collected timing information

• Subsection 1: quality
• Subsection 2: performance
• Subsection 3: comparison to prior art
• Subsection 4: limitations
Results and discussion: quality

• Provide evidence as to how well your method works
• If your method resorts to approximation, resort to truth
Results and discussion: performance

• Measure performance accurately
 – Relevant data sets

• Measure performance thoroughly
 – Identify parameters affecting performance and measure performance for various values
 – Discuss numbers obtained; discuss best and worst cases
 – When appropriate derive asymptotic cost of your method

• Show performance with graphs and tables
Results and discussion: performance

• Give some information on implementation
 – High level, do not give boring details
 – Get into details only if you did something very clever that brought a lot of performance gain

• Remember
 – Paper does not cover linearly the work you put in
 – Things that took months to implement might not even be mentioned
Results and discussion: comparison to prior art

• Try to find implementations of most prominent prior art methods
 – It saves you having to implement them
 – It brings more credibility to the comparison
 – Ask authors if they are willing to share their code

• Show quality and performance differences
 – Conduct a thorough analysis
 – Do not avoid cases where your method doesn’t do so well
 – Performance analysis for same quality
 – Quality analysis for same performance

• Discuss the comparison
 – Explain the differences
 – Explain the tradeoffs—e.g. more speed, less quality
Results and discussion: limitations

• Reviewers have to list the limitations of your method
• A strong paper is expected to self-report its limitations
• Fundamental limitations, which you might inherit from the general “approach” taken, and say so
• Limitations specific to your method, explain what you gain for those limitations, i.e. the tradeoff
• Be unapologetic—your method works for some types of input, and it’s OK that for some it does not
• Explain how some limitations might be removed through future work
Conclusions and future work

- Closing arguments in defense of your paper
 - Closing statement. The last time you talk to reviewers
 - Remind them how good your paper is
- State one more time very succinctly what the method does
 - Emphasize the strengths
 - Emphasize the difference to prior art
- Summarize the comparison to prior art one more time
Conclusions and future work

• Sketch directions for future work
 – Short term fixes and extensions were already mentioned in the limitations subsection
 – Do not make it sound like “paper is incomplete, but accept the paper please, and we promise we will do all these things”
 – Think big and think far into the future
 • Big improvements
 • Applications of method to new contexts
Acknowledgments

• Withheld for double-blind reviews
• Acknowledge all who helped, in decreasing order of contribution
• Acknowledge your group
• Acknowledge your sponsors
References

• Format well
• Do not include references not used in paper
• Include all references used in paper
• Sort according to instructions (appearance, alphabetically)
Appendices

• Put in an appendix text that is not essential to the exposition
 – Proofs
 – Additional results tables
 – Comments from users
 – Questionnaire used in user study

• Do not put in an appendix anything that you want to make sure a reviewer reads
Paper components

- Title
- Authors list
- Abstract
- Keywords
- Introduction
- Prior work
- Method overview
- Method details 1
- Method details 2
- ...
- Results and discussion
- Conclusions and future work
- Acknowledgments
- References
- Appendices
- Video
Video

- Typical but not unique to graphics papers
- A lot of additional work
- It can take as long as writing the paper
- Video and paper need to be consistent
 - Emphasis
 - Method description
 - Result illustration
- Title, introduction, and results of paper on one hand and video on the other hand are strongly interdependent
Video

• Length
 – At most five minutes
 – Some conferences have limits, usually 5min
 – Reviewers lose patience
 – 5min are enough to make your point
Short video

• Video components
 – Best results
Medium video

• Video components
 – Split-screen two-way comparison between method and prior art
 – Or, split-screen two-way comparison between method and truth
 – Additional examples of method
Long video

• Video components
 – Limitations of prior art
 – Preview of best results
 – Illustration of proposed method
 – Split-screen two-way comparison between method and prior art
 – Split-screen two-way comparison between method and truth
 – Or Split-screen three-way comparison between prior art, method, and truth
 – Additional examples
 – Conclusion
Video

• It’s not an action movie!
 – Camera should move very slowly, and even slower in the case of split screens
 – The sequences should be as long as possible
 – Go back and forth several times to make important points
 – Put a red box around an important detail you want to make sure the viewer sees

• For real-time methods include a real-time sequence
 – Side by side comparisons should be done from stills for perfect synch
Video

• Audio voice over is essential
 – Video is difficult to understand without audio
 – Use audio to guide the viewer’s attention to the most important qualities of your method
 – Audio has to be well synchronized to video
 • Mentioning a concept should slightly precede the visual illustration of the concept
 – Audio script should be well aligned with paper introduction, results, and conclusions
Thank you

• Good luck with paper writing
• If this lecture was helpful, acknowledge me in your paper!