Fading:

- \rightarrow signal is time-varying
- \rightarrow e.g., city environment with many buildings and no direct line of sight between sender and receiver

What happens: received signal is comprised of bounced off copies (i.e., echos) from buildings and other reflective obstructions

- \rightarrow called multi-path propagation
- \rightarrow e.g., Rayleigh fading
- \rightarrow popular model

Clarke's model:

 \rightarrow generative model leading to Rayleigh fading

A. If there are many echos and the echos are independent of each other

then the average signal strength of the echos has a Gaussian (i.e., normal) distribution

 \rightarrow central limit theorem

B. EM sinusoid has phase in addition to magnitude

- \rightarrow two components
- \rightarrow assume independence
- By assumption A, each component is Gaussian
- \rightarrow sum of two independent Gaussians: Rayleigh distribution
- \rightarrow statistical property of time-varying envelop

Mobile's signal strength fluctuates

 \rightarrow fading causes bit flips

 \rightarrow use FEC

Note: generative method call ray tracing

 \rightarrow e.g., used in computer graphics

If there is a dominant ray (e.g., line of sight) then leads to Rician fading.

Indoor environment

 \rightarrow more involved

 \rightarrow utilize ray tracing

Park

Note: indoor position triangulation using signal strength is difficult

- \rightarrow practical applications (e.g., companies tracking employees)
- \rightarrow network interface reports RSSI (received signal strength indication)
- \rightarrow RSSI may not be reliable indicator

RSSI profile combined with mobility \rightarrow walking speed (HAAS corridor)

- \rightarrow walking back-and-forth from AP
- \rightarrow gradual distance dependence
- \rightarrow significant short-term fluctuation
- \rightarrow Doppler shift effect minimal

Indoor signal propagation:

- \rightarrow large empty room
- \rightarrow no obstructions
- \rightarrow 802.11 WLAN hot spot: AP attached to wall

Signal strength reception at height 0.7 m:

- \rightarrow approximate table height
- \rightarrow carrier frequency: 5.32 GHz

- \rightarrow signal strength varies by distance
- \rightarrow but also varies by location
- \rightarrow further away does not imply weaker signal

Multi-path fading:

 \rightarrow EM waves interfere constructively and destructively

- \rightarrow depends on phase
- \rightarrow use ray tracing

Locations of destructive interference:

 \rightarrow bad signal reception even though closer to AP

Locations of constructive interference:

 \rightarrow good signal reception even though farther away from AP

Magnitude of impact.

 \rightarrow SNR and throughput along straight line from AP

 \rightarrow significant SNR variation

- \rightarrow good locations, bad locations
- \rightarrow leads to unfairness, even starvation

Indoor office 802.11 WLAN hot spot:

Throughput share of 16 HP/Compaq pocket PCs: \rightarrow uplink CSMA competition

 \rightarrow offered load: stress placed on the system \rightarrow significant unfairness

 \rightarrow what can be done?

Changing carrier frequency:

 \rightarrow 5.805 GHz (channel 12)

- \rightarrow qualitatively similar to channel 8
- \rightarrow quantitatively different: frequency selective fading
- \rightarrow use OFDM to send bits on different subcarriers
- \rightarrow combined with FEC