WIRELESS COMMUNICATION

Unique features that differentiate from wired communication

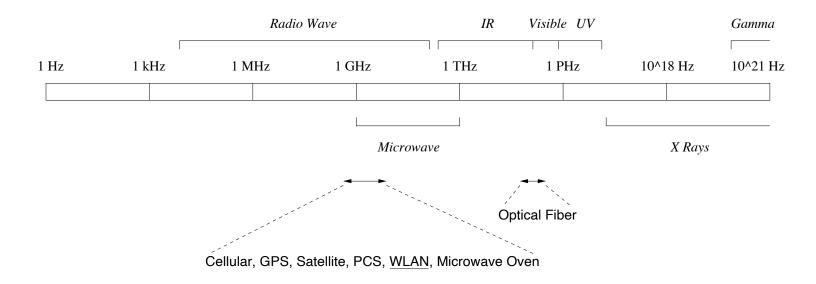
Ubiquitous technology:

- Wireless communication explosion
 - \rightarrow initially driven by WLAN
 - \rightarrow took many by surprise
 - \rightarrow high-speed cellular Internet access
- Cellular telephony: 5G, 4G
 - \rightarrow 5G (formerly 4G): stationary 1 Gbps, mobile 100 Mbps
 - $\rightarrow 3 \mathrm{G}$ phased out
 - \rightarrow cellular, telcos, data providers: in the same mix
 - \rightarrow all-in-one handhelds

- NFC and RFID
 - \rightarrow low bandwidth apps
- wireless PAN (personal area networks): tens of feet or less
 - \rightarrow e.g., get rid of wires: wireless USB, UWB, Bluetooth (802.15)
 - \rightarrow home and automobile entertainment systems
 - \rightarrow high (and low) bandwidth apps
- special purpose wireless: GPS, satellite radio, digital TV, 60 GHz wireless networks
- LoRa
 - \rightarrow long-range (tens of miles), low power
 - \rightarrow 902–928 MHz (US)

Wireless signal propagation

- \rightarrow NIC: air interface
 - directed signal propagation: directed antenna or IR (infrared)


 \rightarrow target range: 10+ GHz; e.g., 60 GHz

• undirected signal propagation: e.g., omni-directional antenna

 \rightarrow target range: 100 MHz–10 GHz

- increased exposure to interference and noise
 - \rightarrow lack of physical shielding
 - \rightarrow fundamentally different from wires
- inter-user interference cannot be localized at switch
 - \rightarrow potential problem for QoS-sensitive apps

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz–300 GHz
- \longrightarrow Microwave: 1 GHz–1 THz
- \longrightarrow Wireless: concentration ${\sim}0.8$ GHz–6 GHz
- \longrightarrow Optical fiber: THz

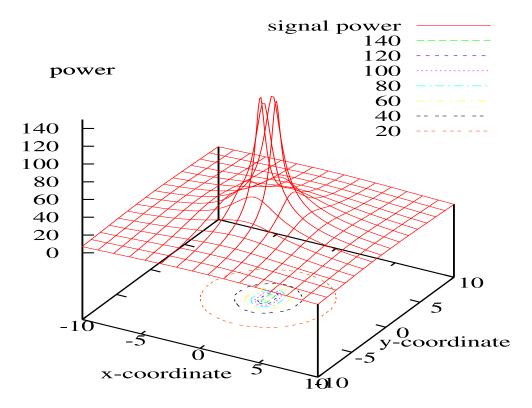
Miscellaneous spectrum allocations (U.S.):

 \rightarrow FCC (Federal Communications Commission)

- AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz−216 MHz, 470 MHz−825 MHz
 → analog TV spectrum: VHF, UHF
 → audio (FM), video (AM)
- \bullet Cellular: 824–849 MHz, 869–894 MHz, 1.85–1.99 GHz
- GPS (Global Positioning System): 1.2276–1.57542 GHz \rightarrow CDMA
 - $\rightarrow \sim \! 30$ satellites (DoD), 10900 miles
 - \rightarrow navigation service: trilateration

- Satellite: Ka-band 18.3–18.8 Ghz, 19.7–20.2 GHz (down-link), 27.5–31 GHz (uplink)
- Satellite: Ku-band 11.7–12.2 Ghz (downlink), 14–14.5 GHz (uplink)
- Satellite: C-band 3.7–4.2 GHz (downlink), 5.925–6.425 GHz (uplink)
 - \rightarrow TDMA/FDMA based
- Many other frequency bands
 - \rightarrow cf. FCC chart
 - \rightarrow www.ntia.doc.gov/osmhome/allochrt.pdf

Characteristic Features


Free space loss:

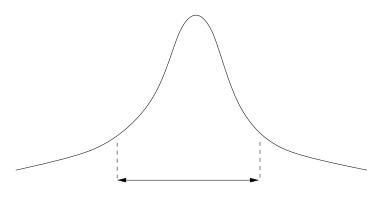
- \bullet transmitting antenna: signal power $P_{\rm snd}$
- receiving antenna: signal power $P_{\rm rev}$
- distance: d
- carrier frequency: f

$$P_{
m rcv} \,\propto\, P_{
m snd} \, rac{1}{d^2 f^2}$$

- \rightarrow quadratic decrease in distance
- \rightarrow quadratic decrease in frequency
- \rightarrow real-world: more complicated

Power profile in 2-D space:

 \rightarrow sender located at center

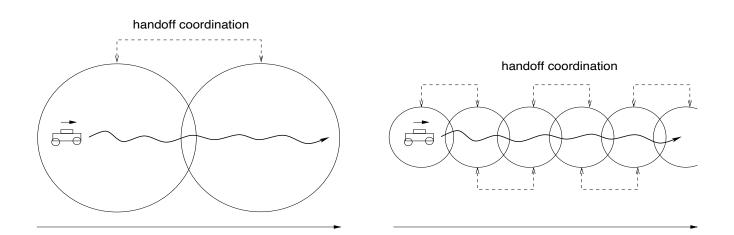

Real-world illustration: www.cs.purdue.edu/~park/cs536/pics

• coverage limited primarily by distance

 \rightarrow the farther away, the weaker the signal

 \rightarrow impacts SNR

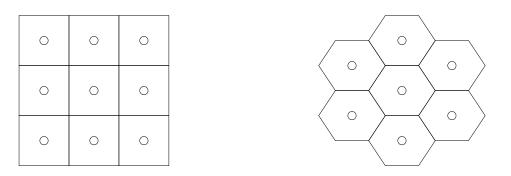
• design choice: single high-power antenna or multiple low-power antennae



overlap region

spatial coverage by two low-power antennas

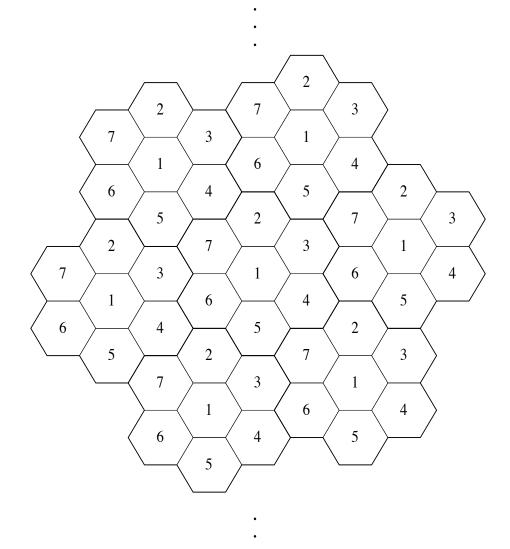
spatial coverage by one high-power antenna


- low-power:
 - \rightarrow decreases cell size: bad for coverage
 - \rightarrow but good because less crowding
 - \rightarrow also, enables frequency reuse: similar to radio stations
 - \rightarrow bad: more base stations required
 - \rightarrow also creates handoff coordination overhead (e.g., I65)

Cellular networks:

 \rightarrow network of wireless base stations

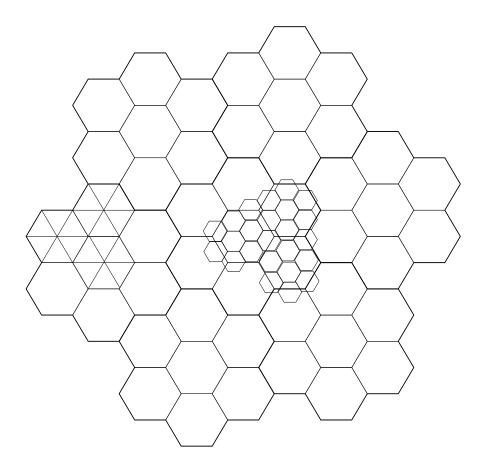
Can view as:


- \rightarrow tiling of the plane (also called tesselation)
- \rightarrow hexagonal

Frequency reuse: assume adjacent cells do not use common carrier frequency

- \rightarrow avoid interference
- \rightarrow how many frequencies are required?

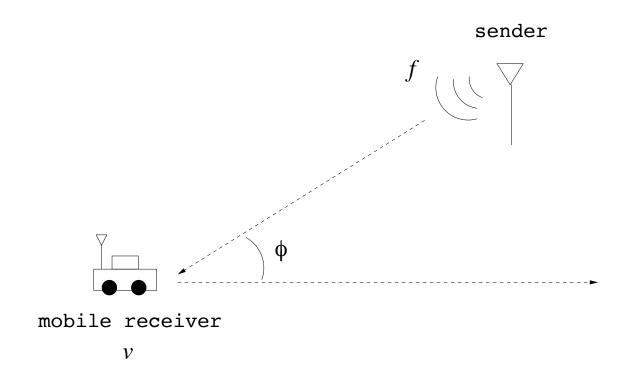
. . .


For example, using seven frequencies:

 \rightarrow in general, coloring problem

.

Non-uniform covering:


→ directional antenna: triangular shape (e.g., cone) → non-uniform density (e.g., city center, stadium) → microcell, picocell, femtocell Impact of mobility on signal:

- Doppler effect
- fading

Doppler frequency shift:

Set-up:

- mobile (e.g., car, train, pedestrian) travels in straight line at speed v mph
- \bullet sender transmits data on carrier frequency $f~{\rm Hz}$
- \bullet angle between mobile and sender is θ

 \rightarrow frequency experienced by mobile is not f \rightarrow distorted version of f, f'

Distorted frequency under Doppler effect:

$$f' = f + f\left(\frac{v}{\text{sol}}\cos\phi\right)$$

Impact:

• $\phi = 0$ deg: head-on

 \rightarrow frequency shift: highest

- $\phi = 180$ deg: opposite direction
 - \rightarrow frequency shift: lowest
- $\phi = 90$ deg: right angle
 - \rightarrow least distortion
- Ex.: carrier frequency f = 1.8 GHz
- $\rightarrow 4$ mph: 10 Hz, 40 mph: 100 Hz
- \rightarrow similar to noise
- \rightarrow may use FEC to protect against bit flips