
CS 536 Park

TCP’s sliding window protocol:

Stream
Byte

Stream
Byte

Receiver: NextByteExpected

LastByteRead LastByteRcvd

Sender:

LastByteAcked

LastByteSent

LastByteWritten

• sender, receiver maintain buffers MaxSendBuffer,

MaxRcvBuffer

CS 536 Park

Same as generic sliding window

−→ data unit: byte, not packet

Sender side: maintain invariants

• LastByteAcked ≤ LastByteSent ≤ LastByteWritten

• LastByteWritten−LastByteAcked < MaxSendBuffer

−→ buffer flushing (advance window)

−→ application blocking

• LastByteSent−LastByteAcked ≤ AdvertisedWindow

−→ AdvertisedWindow: receiver side free space

−→ upper bounded by receiver window

−→ throttling effect

CS 536 Park

How much sender can still send:

EffectiveWindow = AdvertisedWindow−

(LastByteSent− LastByteAcked)

−→ upper bound

−→ sender may choose to send less

−→ self-throttling

Affected through sender side variable

−→ CongestionWindow

CS 536 Park

EffectiveWindow update procedure:

EffectiveWindow = MaxWindow−

(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

−→ TCP congestion control

CS 536 Park

Receiver side: maintain invariants

• LastByteRead < NextByteExpected ≤

LastByteRcvd + 1

• LastByteRcvd− NextByteRead < MaxRcvBuffer

−→ buffer flushing (advance window)

−→ application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer−

(LastByteRcvd− LastByteRead)

CS 536 Park

Issues:

How to let sender know of change in receiver window size
after AdvertisedWindow becomes 0?

• trigger ACK event on receiver side when

AdvertisedWindow becomes positive

• sender periodically sends 1-byte probing packet

→ design choice: smart sender/dumb receiver

→ same situation for congestion control

CS 536 Park

Silly window syndrome: Assuming receiver buffer is full,

what if application reads one byte at a time with long
pauses?

• can cause excessive 1-byte traffic

• if AdvertisedWindow < MSS then set

AdvertisedWindow← 0

CS 536 Park

Do not want to send too many 1 B payload packets.

Nagle’s method:

• rule: connection can have only one such unacknowl-

edged packet outstanding

• while waiting for ACK, incoming bytes are accumu-
lated (i.e., buffered)

→ compromise between real-time constraints and effi-
ciency

→ facilitates interactive applications

CS 536 Park

RTT estimation:

→ important to not underestimate nor overestimate

Karn/Partridge: maintain running average with precau-
tions

EstimateRTT← α · EstimateRTT + β · SampleRTT

• SampleRTT computed by sender using timer

• α + β = 1; 0.8 ≤ α ≤ 0.9, 0.1 ≤ β ≤ 0.2

• TimeOut ← 2× EstimateRTT or

TimeOut ← 2× TimeOut (if retransmit)

→ need to be careful when estimating SampleRTT

CS 536 Park

Issue of variance:

RTT

Samples

RTT

Samples

−→ need to account for variance

−→ real-world: more messy

CS 536 Park

Jacobson/Karels:

• Difference = SampleRTT− EstimatedRTT

• EstimatedRTT = EstimatedRTT+δ×Difference

• Deviation = Deviation + δ × (|Difference| −
Deviation)

Here 0 < δ < 1.

Then

• TimeOut = µ× EstimatedRTT + φ× Deviation

where µ = 1, φ = 4.

