
# TRANSPORT LAYER PROTOCOLS

- $\rightarrow$  end-to-end
- $\rightarrow$  runs on top of network layer protocols
- $\rightarrow$  treat network layer & below as black box

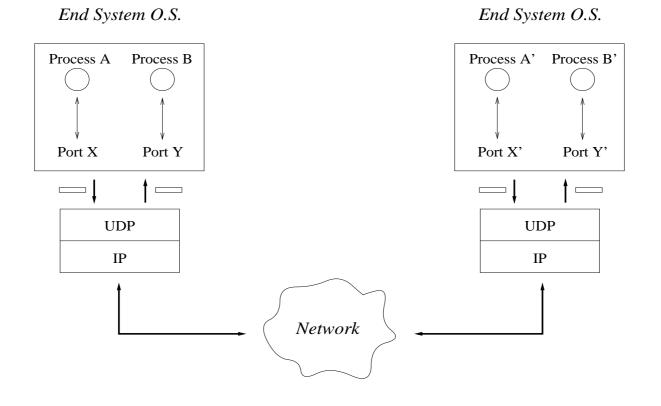
Three-level encapsulation: e.g., TCP and UDP



Meaning of protocol "stack"

 $\rightarrow$  push/pop headers and trailers

Network layer (IP) assumptions:


- unreliable
- out-of-order delivery
- absence of QoS guarantees (delay, throughput, etc.)
- insecure (IPv4)
  - $\rightarrow$  IPsec

Additional performance properties:

- works "ok"
- $\bullet$  can break down under high load conditions
  - $\rightarrow$  e.g., flash crowds, DDoS and worm attacks
- wide behavioral range
  - $\rightarrow$  from good to bad

Goal of UDP (User Datagram Protocol):

- $\longrightarrow$  process identification
- $\longrightarrow$  port number as demux key
- $\longrightarrow$  minimal support beyond IP



Park

### UDP packet format:

| 2           | 2                |  |
|-------------|------------------|--|
| Source Port | Destination Port |  |
| Length      | Checksum         |  |
| Payload     |                  |  |

### Checksum calculation: pseudo header

4

| Source Address      |          |            |
|---------------------|----------|------------|
| Destination Address |          |            |
| 00 · · · 0          | Protocol | UDP Length |

 $\longrightarrow\,$  pseudo header, UDP header and payload

UDP usage:

- multimedia streamining
  - $\rightarrow$  lean and nimble
  - $\rightarrow$  at minimum requires process identification
  - $\rightarrow$  reliability addressed above UDP if needed: FEC or ARQ
  - $\rightarrow$  congestion control addressed above UDP
- lightweight client/server applications
  - $\rightarrow$  persistent state leads to overhead

Goals of TCP (Transmission Control Protocol):

- process identification
- reliable communication: ARQ
- speedy communication: congestion control
- segmentation and MTU
- $\bullet$  connection establishment and tear-down
- $\rightarrow$  complex mixture of functionalities

Provide stream interface to higher level protocols  $\rightarrow$  exported semantics: contiguous byte stream  $\rightarrow$  e.g., accessed using read(), write() system calls

Segmentation:

- segment stream of bytes into blocks of fixed size
- segment size determined by TCP MTU (Maximum Transmission Unit)
- actual unit of transmission in ARQ
- efficiency and reduced fragmentation

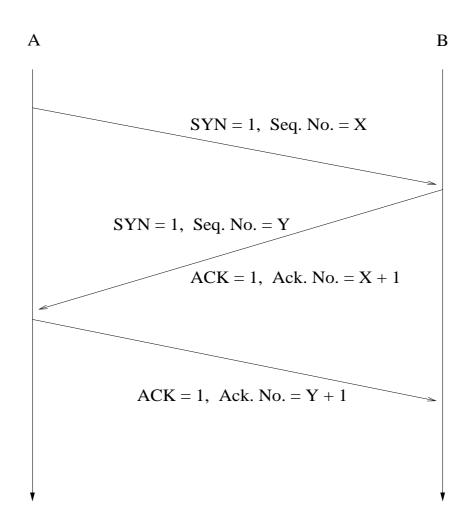
# TCP packet format:

| 2                                                      | 2                |  |
|--------------------------------------------------------|------------------|--|
| Source Port                                            | Destination Port |  |
| Sequence Number                                        |                  |  |
| Acknowledgement Number                                 |                  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Window Size      |  |
| Checksum                                               | Urgent Pointer   |  |
| Options (if any)                                       |                  |  |
| DATA (if any)                                          |                  |  |

- Sequence Number: position of first byte of payload
- Acknowledgement: next byte of data expected (receiver)
- Header Length (4 bits): 4 B units
- URG: urgent pointer flag
- ACK: ACK packet flag
- PSH: override TCP buffering
- RST: reset connection
- SYN: establish connection
- FIN: close connection
- Window Size: receiver's advertised window size
- Checksum: prepend pseudo-header
- Urgent Pointer: byte offset in current payload where urgent data begins
- Options: MTU; take min of sender and receiver

### Checksum calculation: pseudo header

 4

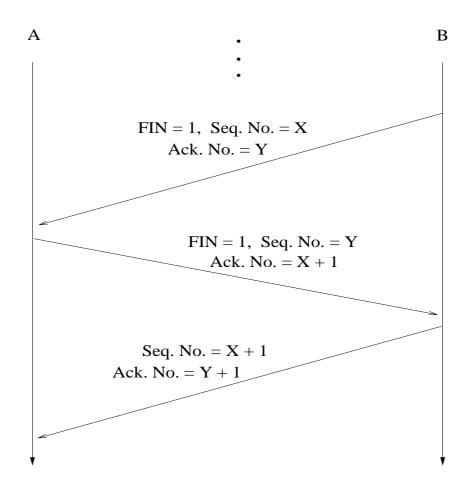

 Source Address

 Destination Address

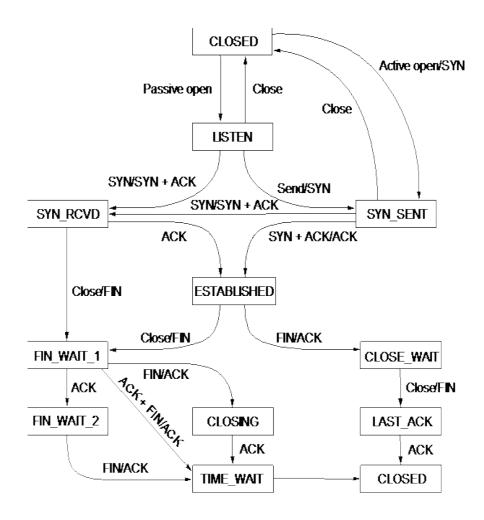
 00 ··· 0
 Protocol
 TCP Segment Length

 $\rightarrow$  pseudo header, TCP header and payload

#### TCP connection establishment (3-way handshake):




- X, Y are chosen randomly
  - $\rightarrow$  mitigate sequence number prediction
- piggybacking


2-party consensus problem: are A and B in agreement about the state of affairs after 3-way handshake?

- $\rightarrow$  in general: in networks with unbounded delay, there is no solution
- $\rightarrow$  acknowledging the ACK  $\ldots$
- $\rightarrow$  lunch date problem
- $\rightarrow$  also TCP session termination

# TCP connection termination:



- full duplex
- half duplex

