
CS 536 Park

Route or path: criteria of goodness

• hop count

• delay

• bandwidth

• loss rate

• policy

• manual configuration

Composition of performance metric:

→→ quality of end-to-end path

• additive: hop count, delay

• min: bandwidth

• multiplicative: loss rate

CS 536 Park

Goodness of routing:

→→ assume N users or sessions

→→ suppose path metric is delay

Two approaches:

• system optimal routing

→ choose paths to minimize 1

N

∑N
i=1

Di

→ good for the system as a whole

• user optimal routing

→ each user i chooses path to minimize Di

→ selfish route selections by each user

→ end result may not be good for system as a whole

CS 536 Park

Pros/cons:

• system optimal routing:

– good: minimizes delay for the system as a whole

– bad: complex and difficult to scale up

• user optimal routing:

– good: simple

– bad: may not make efficient use of resources

→ low utilization

→ tragedy of commons

CS 536 Park

Two pitfalls of user optimal routing:

• fluttering or ping pong effect

→ induced synchronization

• Braess paradox

→ adding more resources (extra link) can make things
worse

CS 536 Park

Increasing resource should improve things but has the

opposite effect

→→ D. Braess (1969)

→→ paradox possible due to user optimal routing

→→ cannot arise in system optimal routing

Modus operandi of the Internet: user optimal routing

→→ simplicity wins the day

. . . conceptually related problem in operating systems

→→ page fault replacement algorithms

→→ Belady’s anomaly

CS 536 Park

Algorithms:

Find short, in particular, shortest paths from source to
destination.

Key observation on shortest paths:

• Assume p is a shortest path from S to D

→ S
p
! D

• Pick any intermediate node X on the path

• Consider the two segments p1 and p2

→ S
p1
! X

p2
! D

• The path p1 from S to X is a shortest path, and so
is the path p2 from X to D

→→ leads to Dijkstra’s algorithm

CS 536 Park

Illustration:

p1

S D
shortest path

shortest path shortest path

S D
X

p

p2

→ suggests algorithm for finding shortest path

CS 536 Park

Dijkstra: single-source all-destination

Features:

• running time: O(n2) time complexity

→ n: number of nodes

• if heap is used: O(|E| log |V |)

→ O(n log n) if |E| = O(n)

• can also be run “backwards”

→ start from destination D and go to all sources

→ a variant used in inter-domain routing

→ forward version: used in intra-domain routing

• source S requires global link distance knowledge

→ centralized algorithm (center: source S)

→ every router runs Dijkstra with itself as source

→ lots of broadcast management packets

CS 536 Park

• Internet protocol implementation

→ OSPF (Open Shortest Path First)

→ also called link state algorithm

→ broadcast protocol

• builds minimum spanning tree rooted at S:

→ to all destinations

→ if select destination: called multicasting

→ multicast group

→ complexity including group membership manage-
ment

CS 536 Park

Distributed/decentralized shortest path algorithm:

→→ Bellman-Ford algorithm

Key procedure:

• Each node X maintains current shortest distance to
all other nodes

→ a distance vector

• Each node X advertises to neighbors its current best
distance estimates

→ i.e., neighbors exchange distance vectors

• Each node X updates shortest paths based on neigh-

bors’ advertised information

d(X,Z)← min{ d(X,Z), d(Y, Z) + !(X, Y) }

→ same update criterion as Dijkstra’s algorithm

CS 536 Park

Features:

• running time: O(n3), i.e., O(n|E|)

→ parallel/distributed: O(|E|)

• each source or router only talks to neighbors

→ local interaction

→ no need to send update if no change

→ if change, entire distance vector must be sent

• knows shortest distance but not path

→ just the next hop is known

• elegant but additional issues compared to Dijkstra’s
algorithm

→ e.g., stability

• Internet protocol implementation

→ RIP (Routing Information Protocol)

CS 536 Park

Data center networks: leaf-spine connectivity

→ each leaf switch connected to all spine switches

→ use equal-cost multipath routing (ECMP)

Suppose n leaf switches, m spine switches. At leaf switch
i ∈ [1, n]:

• IP packet p forwarded to spine switch j ∈ [1,m] if
h(p) = j where hash function

→ input of h: IP source/destination addresses and
port numbers

→ prevent packet reordering issue

• facilitates load balancing

→ TCP incast problem remains

CS 536 Park

QoS routing:

Given two or more performance metrics—e.g., delay and
bandwidth—find path with delay less than target delayD

(e.g., 100 ms) and bandwidth greater than target band-
width B (e.g., 10 Mbps)

→→ from shortest path to best QoS path

→→ multi-dimensional QoS metric

→→ other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

• enumerate all possible paths

• rank them

CS 536 Park

Is there a poly-time algorithm?

→ as of November 2025: unknown

→ specifically: QoS routing is NP-hard

→ strong belief no fast algorithm

In networking: several problems turn out to be NP-complete

→ e.g., scheduling, crypto, . . .

→ “P = NP” problem

→ one of the hardest problems in science

In practice: doesn’t matter too much for QoS routing

→ no pressing demand (yet) for very good algorithm

→ intra-domain: short paths

→ inter-domain: policy routing

CS 536 Park

Policy routing:

→→ meaning of “policy” is not precisely defined

→→ almost anything goes

Criteria include:

• Performance

→ e.g., short paths

• Trust

→ what is “trust”?

• Economics

→ pricing

• Geo-politics, etc.

CS 536 Park

Implementation:

Internet routing protocols:

• RIP: intra-domain, Bellman-Ford

→ also called distance vector routing

→ metric: hop count

→ UDP

→ nearest neighbor advertisement

→ popular in small intra-domain networks

→ e.g., used at Purdue for many years

• OSPF: intra-domain, Dijkstra

→ also called link state

→ metric: average delay

→ directly over IP: protocol number 89

→ broadcasting via flooding

→ popular in larger intra-domain networks

CS 536 Park

• IS-IS: intra-domain, Dijkstra

→ directly over link layer (e.g., Ethernet)

→ less complex than OSPF

→ popular in larger intra-domain networks

→→ intra-domain routing: performance based

iBGP (interior BGP): intra-domain protocol that bridges
gap with BGP inter-domain routing

→→ eBPG (exterior BGP)

CS 536 Park

BGP (Border Gateway Protocol):

→→ inter-domain routing

Peering

Border Routers

Autonomous System BAutonomous System A

→ peering between two domains

→ typical: customer-provider relationship

→ in some cases: A and B are equals (true peers)

CS 536 Park

• CIDR addressing

→ i.e., a.b.c.d/x

→ Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20

→ check at www.iana.org (e.g., ARIN for US)

• Metric: policy

→ e.g., shortest-path, trust, pricing

→ meaning of “shortest”: delay, router hop, AS hop

→ mechanism: path vector routing

→ BPG update message

CS 536 Park

BGP route update:

→→ BGP update message propagation

BGP update message format:

ASNAk → · · ·→ ASNA2 → ASNA1; a.b.c.d/x

Meaning: ASN A1 (with CIDR address a.b.c.d/x) can be
reached through indicated path

→→ called path vector

→→ also AS-PATH

Some AS numbers:

• BBN: 1

• UUNET: 701

• Level3: 3356

• Abilene (aka “Internet2”): 11537

• AT&T: 7018

• Purdue: 17

CS 536 Park

Policy:

• if multiple AS-PATHs to target AS are known, choose
one based on policy

→ e.g., shortest AS path length, cheapest, least wor-
risome

• advertise to neighbors target AS’s reachability

→ also subject to policy

→ no obligation to advertise!

→ specifics depend on bilateral contract (SLA)

SLA (service level agreement):

→→ bandwidth (e.g., 40 Gbps)

→→ delay (e.g., avrg. 20ms US), loss (e.g., 0.01%)

→→ peak vs. average

→→ pricing

→→ availability, among others

CS 536 Park

Example:

AS A

AS H

AS F

AS G
AS E

AS D

AS C

AS B

StubProvider

A; a.b.c.d/xAS H

AS A
F −> C −> B −> A; a.b.c.d/x

B −> A; a.b.c.d/x

B −> A; a.b.c.d/x

D −> B −> A; a.b.c.d/x

G −> D −> B −> A; a.b.c.d/x

C −> B −> A; a.b.c.d/x
AS F AS C

AS B
AS D

AS G
AS E

Purdue: ASN 17; 128.10.0.0/16

CS 536 Park

Performance:

Route update frequency:

→→ routing table stability vs. responsiveness

→→ rule: not too frequently

→→ 30 seconds

→→ stability wins

→→ hard lesson learned from the past (sub-second)

→→ legacy: TTL

Other factors for route instability:

→→ selfishness (e.g., fluttering)

→→ BGP’s vector path routing: can be unstable

→→ more common: slow convergence

→→ target of denial-of-service (DoS) attack

CS 536 Park

Route amplification:

→→ shortest AS path %= shortest router path

→→ e.g., may be several router hops longer

→→ AS graph vs. router graph

→→ policy: company in Denmark

Route asymmetry:

→→ routes are not symmetric

→→ mainly artifact of inter-domain policy routing

→→ various performance implications

→→ source traceback

CS 536 Park

Black holes:

→→ persistent unreachable destination prefixes

→→ BGP routing problems

→→ further aggrevated by DNS

