CS 536

Park

Route or path: criteria of goodness
e hop count
e delay
e bandwidth
e loss rate
e policy

e manual configuration

Composition of performance metric:

— quality of end-to-end path
e additive: hop count, delay
e min: bandwidth

e multiplicative: loss rate

CS 556 Park

Goodness of routing:
— assume /N users or sessions

— suppose path metric is delay

Two approaches:
e system optimal routing
— choose paths to minimize sz\il D,
— good for the system as a whole

e user optimal routing

— each user ¢ chooses path to minimize D;
— selfish route selections by each user

— end result may not be good for system as a whole

CS 556 Park

Pros/cons:
e system optimal routing:

— good: minimizes delay for the system as a whole

— bad: complex and difficult to scale up
e user optimal routing:
— good: simple
— bad: may not make efficient use of resources
— low utilization

— tragedy of commons

CS 556 Park

Two pitfalls of user optimal routing:
e fluttering or ping pong effect
— induced synchronization
e Braess paradox

— adding more resources (extra link) can make things
worse

CS 556 Park

Increasing resource should improve things but has the

opposite effect
— D. Braess (1969)

— paradox possible due to user optimal routing

— cannot arise in system optimal routing

Modus operandi of the Internet: user optimal routing

— simplicity wins the day

... conceptually related problem in operating systems
—— page fault replacement algorithms

— Belady’s anomaly

CS 556 Park

Algorithms:

Find short, in particular, shortest paths from source to
destination.

Key observation on shortest paths:
e Assume p is a shortest path from S to D
— S %D
e Pick any intermediate node X on the path
e Consider the two segments p; and ps
S S X B D

e The path p; from S to X is a shortest path, and so
is the path py from X to D

— leads to Dijkstra’s algorithm

CS 556 Park

[llustration:

%

S (:}/’f/M\\\\\\¥/////”‘\\\\w//<> D

shortest path

shortest path shortest path

— suggests algorithm for finding shortest path

CS 556 Park

Dijkstra: single-source all-destination

Features:

e running time: O(n?) time complexity
— n: number of nodes

o if heap is used: O(|F|log |V])
— O(nlogn) if |[E| = O(n)

e can also be run “backwards”
— start from destination D and go to all sources
— a variant used in inter-domain routing
— forward version: used in intra-domain routing

e source S requires global link distance knowledge
— centralized algorithm (center: source S

— every router runs Dijkstra with itself as source

— lots of broadcast management packets

CS 556 Park

e Internet protocol implementation

— OSPF (Open Shortest Path First)
— also called link state algorithm
— broadcast protocol

e builds minimum spanning tree rooted at .S:

— to all destinations
— if select destination: called multicasting
— multicast group

— complexity including group membership manage-
ment

CS 556 Park

Distributed /decentralized shortest path algorithm:

— Bellman-Ford algorithm

Key procedure:

e Fach node X maintains current shortest distance to
all other nodes

— a distance vector

e Each node X advertises to neighbors its current best
distance estimates

— 1.e., neighbors exchange distance vectors

e Fach node X updates shortest paths based on neigh-
bors” advertised information

d(X,7) « min{ d(X,Z), d(Y,Z) + ((X,Y))}

— same update criterion as Dijkstra’s algorithm

CS 556 Park

Features:
e running time: O(n?), i.c., O(n|E|)
— parallel /distributed: O(|F|)
e cach source or router only talks to neighbors

— local interaction
— no need to send update if no change
— if change, entire distance vector must be sent

e knows shortest distance but not path
— just the next hop is known

e clegant but additional issues compared to Dijkstra’s
algorithm

— e.g., stability
e Internet protocol implementation

— RIP (Routing Information Protocol)

CS 556 Park

Data center networks: leaf-spine connectivity

— each leaf switch connected to all spine switches

— use equal-cost multipath routing (ECMP)

Suppose n leaf switches, m spine switches. At leaf switch
i€ [1,n]:

e [P packet p forwarded to spine switch j € [1,m] if
h(p) = j where hash function

— input of h: IP source/destination addresses and
port numbers

— prevent packet reordering issue

e facilitates load balancing

— TCP incast problem remains

CS 556 Park

QoS routing:

Given two or more performance metrics—e.g., delay and
bandwidth—find path with delay less than target delay D
(e.g., 100 ms) and bandwidth greater than target band-
width B (e.g., 10 Mbps)

—— from shortest path to best QoS path
— multi-dimensional QoS metric

— other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force
e cnumerate all possible paths

e rank them

CS 556 Park

[s there a poly-time algorithm?
— as of November 2025: unknown
— specifically: QoS routing is NP-hard

— strong belief no fast algorithm

In networking: several problems turn out to be NP-complete
— e.g., scheduling, crypto, ...
— “P = NP” problem

— one of the hardest problems in science

In practice: doesn’t matter too much for QoS routing
— no pressing demand (yet) for very good algorithm
— intra-domain: short paths

— inter-domain: policy routing

CS 556 Park

Policy routing:
— meaning of “policy” is not precisely defined

— almost anything goes

Criteria include:
e Performance
— e.g., short paths
e [rust
— what is “trust”?
e [iconomics
— pricing

e Geo-politics, etc.

CS 556 Park

Implementation:

Internet routing protocols:

e RIP: intra-domain, Bellman-Ford
— also called distance vector routing
— metric: hop count
— UDP
— nearest neighbor advertisement
— popular in small intra-domain networks
— e.g.. used at Purdue for many years
e OSPF': intra-domain, Dijkstra
— also called link state
— metric: average delay
— directly over IP: protocol number 89
— broadcasting via flooding

— popular in larger intra-domain networks

CS 556 Park

e [S-IS: intra-domain, Dijkstra
— directly over link layer (e.g., Ethernet)

— less complex than OSPF

— popular in larger intra-domain networks

— intra-domain routing: performance based

iBGP (interior BGP): intra-domain protocol that bridges
gap with BGP inter-domain routing

— eBPG (exterior BGP)

CS 556 Park

BGP (Border Gateway Protocol):

— inter-domain routing

Autonomous System A Autonomous System B

W
Border Routers

— peering between two domains
— typical: customer-provider relationship

— in some cases: A and B are equals (true peers)

CS 556 Park

e CIDR addressing

— e, a.bcd/x
— Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
— check at www.iana.org (e.g., ARIN for US)
e Metric: policy
— e.g., shortest-path, trust, pricing
— meaning of “shortest”: delay, router hop, AS hop
— mechanism: path vector routing

— BPG update message

CS 556 Park

BGP route update:

— BGP update message propagation

BGP update message format:
ASNA; — -+ — ASNAy — ASNA;;ab.cd/x

Meaning: ASN A; (with CIDR address a.b.c.d/x) can be
reached through indicated path

— called path vector
— also AS-PATH

Some AS numbers:
e BBN: 1

e UUNET: 701

o Level3: 3356

e Abilene (aka “Internet2”): 11537
o AT&T: 7018

e Purdue: 17

CS 536

Park

Policy:

e if multiple AS-PATHs to target AS are known, choose
one based on policy

— e.g., shortest AS path length, cheapest, least wor-

risome

e advertise to neighbors target AS’s reachability

— also subject to policy

— no obligation to advertise!

— specifics depend on bilateral contract (SLA)

SLA

VS

Lelb D

service level agreement):

bandwidth (e.g., 40 Gbps)

delay (e.g., avrg. 20ms US), loss (e.g., 0.01%)
peak vs. average

pricing

availability, among others

CS 556 Park

Example:

AS B AS A
ﬁ _

AS H
Provider Stub
AS D
AS G
AS E
ASF AS C
C—>B-—>A;ab.cd/x Purdue: ASN 17; 128.10.0.0/16

AS H

—>B —> A;ab.cd/x

Q B —> A;ab.cd/x AS A
F—>C-—>B-—>A;ab.cdXx \
B —> A;ab.cd/x Q
A;ab.cd/x
A

S B

G—>D->B—>A;ab.cd/X

AS D

AS G
AS E

CS 536

Park

Performance:

Route update frequency:

Ll

routing table stability vs. responsiveness

rule: not too frequently

30 seconds

stability wins

hard lesson learned from the past (sub-second)

legacy: TTL

Other factors for route instability:

.

selfishness (e.g., fluttering)
BGP’s vector path routing: can be unstable
more common: slow convergence

target of denial-of-service (DoS) attack

CS 556 Park

Route amplification:
shortest AS path # shortest router path
e.g., may be several router hops longer

AS graph vs. router graph

.

policy: company in Denmark

Route asymmetry:
routes are not symmetric
mainly artifact of inter-domain policy routing

various performance implications

L

source traceback

CS 556 Park

Black holes:
—— persistent unreachable destination prefixes
— BGP routing problems

—— further aggrevated by DNS

