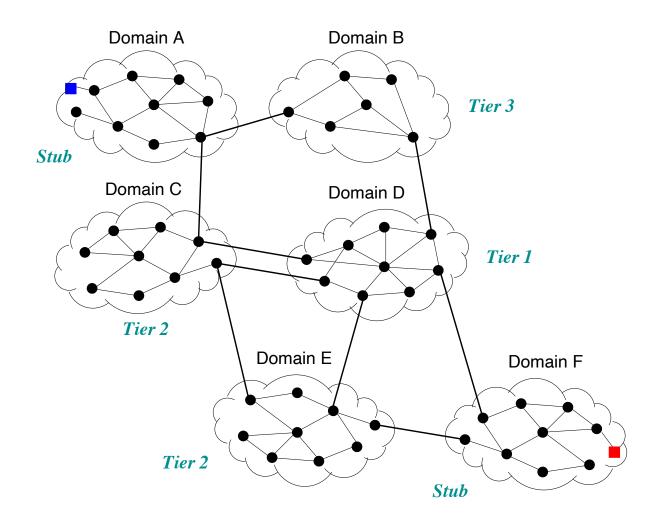

ROUTING

Problem: Given more than one path from source to destination, which one to take?

Features:


- Architecture
- Algorithms
- ullet Implementation
- Performance

Architecture

Internet routing: two separate routing subsystems

 \rightarrow intra-domain: within an organization

 \rightarrow inter-domain: across organizations

Ex.: Purdue to east coast (BU)

[109] infobahn:Routing % traceroute csa.bu.edu
traceroute to csa.bu.edu (128.197.12.3), 30 hops max, 40 byte packets

1 cisco5 (128.10.27.250) 3.707 ms 0.616 ms 0.590 ms

2 172.19.60.1 (172.19.60.1) 0.406 ms 0.431 ms 0.520 ms

3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.491 ms 0.600 ms 0.510 ms

4 gigapop.tcom.purdue.edu (192.5.40.134) 9.658 ms 1.966 ms 1.725 ms

5 192.12.206.249 (192.12.206.249) 1.715 ms 3.381 ms 1.749 ms

6 chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 5.669 ms 8.319 ms 5.601 ms

7 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 25.626 ms 25.664 ms 25.621 ms

8 noxgs1-P0-6-0-NoX-NOX.nox.org (192.5.89.9) 30.634 ms 30.768 ms 30.722 ms

9 192.5.89.202 (192.5.89.202) 31.128 ms 31.045 ms 31.082 ms

10 cumm111-cgw-extgw.bu.edu (128.197.254.121) 31.287 ms 31.152 ms 31.146 ms

11 cumm111-dgw-cumm111.bu.edu (128.197.254.162) 31.224 ms 31.192 ms 31.308 ms

Ex.: Purdue to west coast (Cisco)

[112] infobahn:Routing % traceroute www.cisco.com

12 csa.bu.edu (128.197.12.3) 31.529 ms 31.243 ms 31.367 ms

traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte packets

1 cisco5 (128.10.27.250) 0.865 ms 0.598 ms 1.282 ms

2 172.19.60.1 (172.19.60.1) 0.518 ms 0.379 ms 0.405 ms

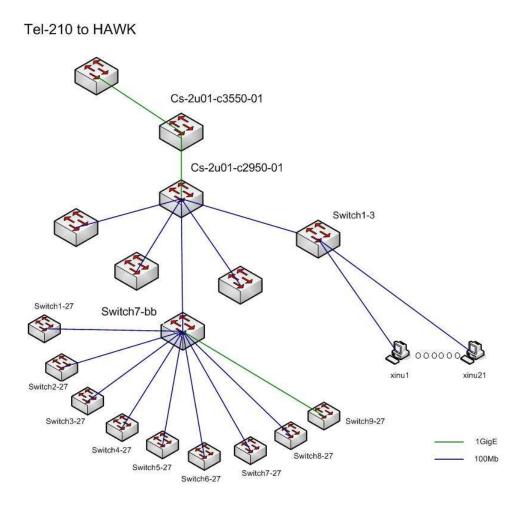
3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.687 ms 0.551 ms 0.551 ms

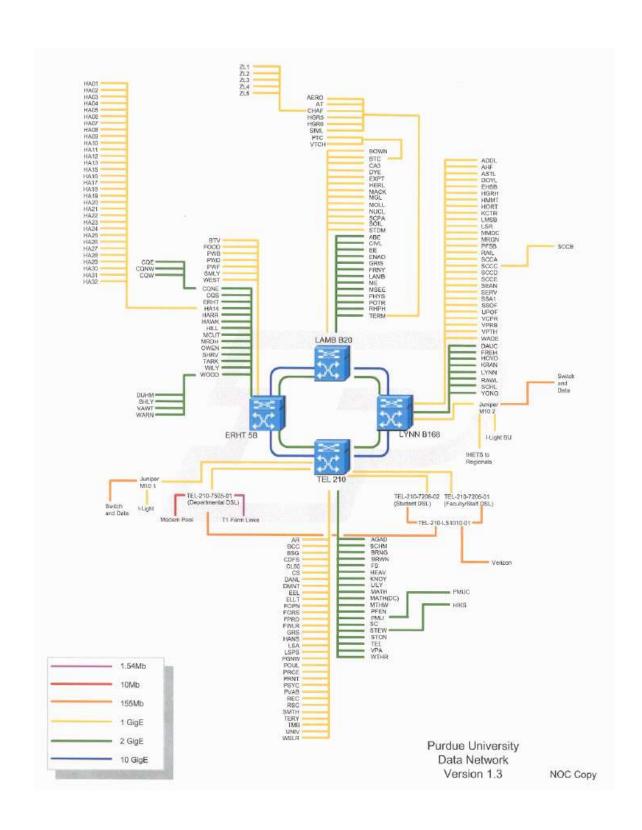
4 switch-data.tcom.purdue.edu (192.5.40.34) 3.496 ms 3.523 ms 2.750 ms

5 so-2-3-0-0.gar2.Chicago1.Level3.net (67.72.124.9) 8.114 ms 20.181 ms 8.512 ms

6 so-3-3-0.bbr1.Chicago1.Level3.net (4.68.96.41) 11.543 ms 9.079 ms 8.239 ms

7 ae-0-0.bbr1.SanJose1.Level3.net (64.159.1.129) 62.319 ms as-1-0.bbr2.SanJose1.Level3.net


8 ge-11-0.ipcolo1.SanJose1.Level3.net (4.68.123.41) 68.180 ms ge-7-1.ipcolo1.SanJose1.Level3


9 p1-0.cisco.bbnplanet.net (4.0.26.14) 75.006 ms 72.557 ms 70.377 ms 10 sjce-dmzbb-gw1.cisco.com (128.107.239.53) 66.075 ms 69.223 ms 68.350 ms

11 sjck-dmzdc-gw1.cisco.com (128.107.224.69) 65.650 ms 74.358 ms 69.952 ms 12 °C

Three levels: LAN, intra-domain, and inter-domain

→ LAN: spanning tree, broadcast/flooding

Inter-domain topology:

- → each dot (or node) is a domain (e.g., Purdue)
- \longrightarrow autonomous system (AS): 16- or 32-bit ID

Inter-domain connectivity of Purdue:

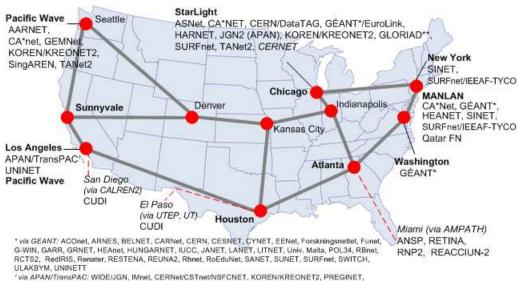
• AS 6939 (Hurricane), Internet 2 (AS11164), etc. \rightarrow INDIANAGIGAPOP (AS 19782) \rightarrow Purdue (AS 17)

- AS 3356 (Level3), AS 6939 (Hurricane), AS 1299 (Arelion), AS 6461 (Zayo) → WINTEK (AS 11114) → Purdue (AS 17)
- \rightarrow changes over time (e.g., economic reasons)

Indy GigaPoP (19782):

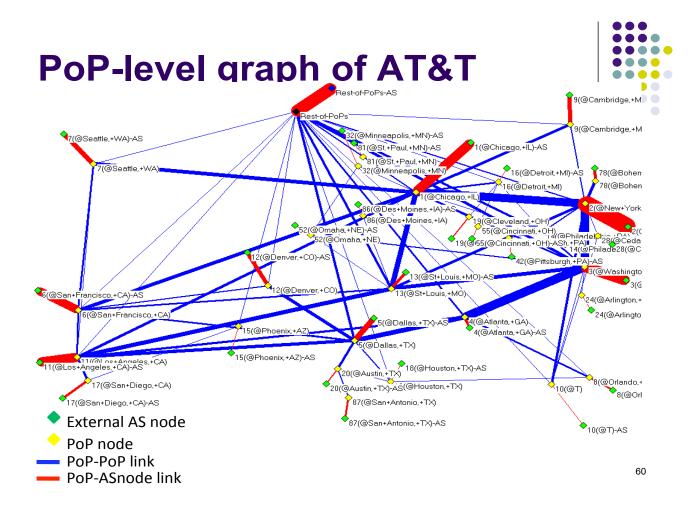
- → part of I-Light (Indiana state-wide project)
- \rightarrow located at IUPUI
- → provides state-level fiber connectivity including Purdue and IU

Lumen Technologies (AS 3356): tier-1


from lumen.com

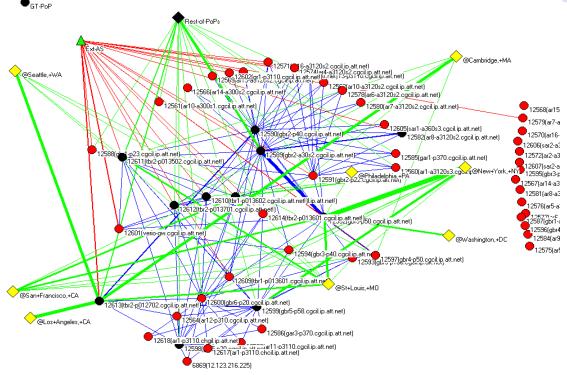
CS 536 Park

Abilene/Internet2 backbone: www.internet2.edu



Abilene International Network Peers

SingAREN, TANET2, ThaiSARN, WIDE (v6)
** via GLORIAD: CSTNET, RBnet


AT&T (AS 7018)'s U.S. PoP topology (inferred):

AT&T's Chicago PoP connectivity (inferred):

Chicago PoP of AT&T

61

Granularity of routing network:

- router
 - → IP routing (also MPLS routing in large ISPs)
 - \rightarrow note: LAN routing is invisible
- domain: autonomous system
 - \rightarrow 16- or 32-bit identifier ASN
 - \rightarrow extended to 32-bit in 2007
 - \rightarrow assigned by IANA along with IP prefix block (CIDR)

Network topology

- \rightarrow i.e., connectivity
 - router graph
 - → node: router/switch
 - \rightarrow edge: physical link between two routers
 - AS graph
 - \rightarrow node: AS
 - \rightarrow edge: physical link between 2 or more border routers
 - → sometimes at exchange point/network

Router type:

- access router
 - \rightarrow collects traffic from devices of a domain/network
 - → distributes traffic to devices of a domain/network
- border router
 - → interface between two or more domains
 - \rightarrow packet crosses administrative boundary
- backbone router
 - \rightarrow routers that form intradomain network
 - \rightarrow e.g., Purdue's backbone routers (ring)

Note: traditional intra-domain/enterprise router topology emphasizes vertical (i.e., north-south) traffic

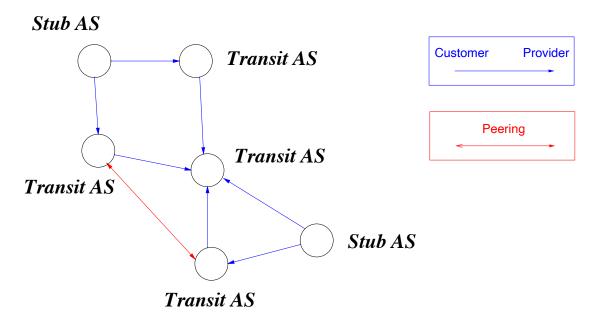
→ vertical aggregation/deaggregation (e.g., fat tree)

Recent data center development: surge of horizontal (i.e., east-west) traffic.

- \rightarrow driven by workload demand (e.g., AI)
- \rightarrow Clos (or leaf-spine) network

In general, data center intranet connectivity is related to interconnection networks studied in parallel computing.

- \bullet multi-stage networks: $\log n$ stages
 - \rightarrow e.g., shuffle-exchange, omega, butterfly networks
- non-blocking: satisfy input/output permutation without collision


Other commonly used connectivity:

- crossbar switch
 - \rightarrow overhead quadratic
 - → suited for router switching fabric, SoC
- Clos network
 - \rightarrow 2-stage variant: provides multiple parallel paths between leaf nodes
 - \rightarrow L2 leaf switches connect switches
 - \rightarrow L3 spine switches connect leaf switches
 - \rightarrow variations

AS type:

- stub AS: customer AS
 - \rightarrow no forwarding
 - \rightarrow may be multi-homed (more than one provider)
- transit AS
 - \rightarrow provide connectivity to stub AS's and smaller transit AS's
 - \rightarrow tier-1: global reachability and no provider above
 - \rightarrow tier-2 or tier-3: regional providers as well as customers of tier-1 AS's

AS graph:

Inter-AS relationship: bilateral

- customer-provider: customer subscribes bandwidth from provider
 - \rightarrow customer can reach provider's reachable IP space
- peering:
 - \rightarrow only the peer's IP address and below
 - \rightarrow the peer's provider's address space: invisible

Common peering:

- among tier-1 providers
 - \rightarrow ensures global reachability
 - \rightarrow exclusive club
 - \rightarrow less regulated than telephony
- among tier-2 providers
 - \rightarrow regional providers
 - \rightarrow economic factors
- among stubs
 - \rightarrow economic factors
 - \rightarrow e.g., content provider and access ("eyeball") provider
 - \rightarrow e.g., Time Warner and AOL