
CS 536 Park

Algorithms:

Find short, in particular, shortest paths from source to
destination.

Key observation on shortest paths:

• Assume p is a shortest path from S to D

→ S
p
! D

• Pick any intermediate node X on the path

• Consider the two segments p1 and p2

→ S
p1
! X

p2
! D

• The path p1 from S to X is a shortest path, and so
is the path p2 from X to D

−→ leads to Dijkstra’s algorithm

CS 536 Park

Illustration:

p1

S D
shortest path

shortest path shortest path

S D
X

p

p2

→ suggests algorithm for finding shortest path

CS 536 Park

Dijkstra: single-source all-destination

Features:

• running time: O(n2) time complexity

→ n: number of nodes

• if heap is used: O(|E| log |V |)

→ O(n log n) if |E| = O(n)

• can also be run “backwards”

→ start from destination D and go to all sources

→ a variant used in inter-domain routing

→ forward version: used in intra-domain routing

• source S requires global link distance knowledge

→ centralized algorithm (center: source S)

→ every router runs Dijkstra with itself as source

→ lots of broadcast management packets

CS 536 Park

• Internet protocol implementation

→ OSPF (Open Shortest Path First)

→ also called link state algorithm

→ broadcast protocol

• builds minimum spanning tree rooted at S:

→ to all destinations

→ if select destination: called multicasting

→ multicast group

→ complexity including group membership manage-
ment

CS 536 Park

Distributed/decentralized shortest path algorithm:

−→ Bellman-Ford algorithm

Key procedure:

• Each node X maintains current shortest distance to
all other nodes

→ a distance vector

• Each node X advertises to neighbors its current best
distance estimates

→ i.e., neighbors exchange distance vectors

• Each node X updates shortest paths based on neigh-

bors’ advertised information

d(X,Z)← min{ d(X,Z), d(Y, Z) + !(X, Y) }

→ same update criterion as Dijkstra’s algorithm

CS 536 Park

Features:

• running time: O(n3), i.e., O(n|E|)

→ parallel/distributed: O(|E|)

• each source or router only talks to neighbors

→ local interaction

→ no need to send update if no change

→ if change, entire distance vector must be sent

• knows shortest distance but not path

→ just the next hop is known

• elegant but additional issues compared to Dijkstra’s
algorithm

→ e.g., stability

• Internet protocol implementation

→ RIP (Routing Information Protocol)

CS 536 Park

QoS routing:

Given two or more performance metrics—e.g., delay and
bandwidth—find path with delay less than target delayD

(e.g., 100 ms) and bandwidth greater than target band-
width B (e.g., 10 Mbps)

−→ from shortest path to best QoS path

−→ multi-dimensional QoS metric

−→ other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

• enumerate all possible paths

• rank them

CS 536 Park

How many paths are there:

• If there are n nodes, there can be up to

n(n− 1)

2
undirected links

• Hence, from source S there can be up to

(n− 1) (n− 2) · · · 3 2 1 = (n− 1)!

paths

• By Stirling’s formula

n! ≈
√
2πn

(n

e

)n

→ superexponential

→ too many for brute-force

CS 536 Park

Is there a poly-time algorithm?

−→ as of April 2024: unknown

−→ specifically: QoS routing is NP-hard

−→ strong belief no fast algorithm

In networking: several problems turn out to be NP-complete

−→ e.g., scheduling, crypto, . . .

−→ “P = NP” problem

−→ one of the hardest problems in science

In practice: doesn’t matter too much for QoS routing

−→ no pressing demand for very good algorithm

−→ “roughly OK” is fine

−→ intra-domain: short paths

−→ inter-domain: policy routing

CS 536 Park

Policy routing:

−→ meaning of “policy” is not precisely defined

−→ almost anything goes

Criteria include:

• Performance

→ e.g., short paths

• Trust

→ what is “trust”?

• Economics

→ pricing

• Geo-politics, etc.

CS 536 Park

Implementation:

Internet routing protocols:

• RIP: intra-domain, Bellman-Ford

→ also called distance vector routing

→ metric: hop count

→ UDP

→ nearest neighbor advertisement

→ popular in small intra-domain networks

• OSPF: intra-domain, Dijkstra

→ also called link state

→ metric: average delay

→ directly over IP: protocol number 89

→ broadcasting via flooding

→ popular in larger intra-domain networks

CS 536 Park

• IS-IS: intra-domain, Dijkstra

→ directly over link layer (e.g., Ethernet)

→ also available over IP (more recent)

→ flooding

→ popular in larger intra-domain networks

CS 536 Park

BGP (Border Gateway Protocol):

−→ inter-domain routing

Peering

Border Routers

Autonomous System BAutonomous System A

→ “peering” between two domains

→ typical: customer-provider relationship

→ in some cases: A and B are equals (true peers)

CS 536 Park

• CIDR addressing

→ i.e., a.b.c.d/x

→ Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20

→ check at www.iana.org (e.g., ARIN for US)

• Metric: policy

→ e.g., shortest-path, trust, pricing

→ meaning of “shortest”: delay, router hop, AS hop

→ mechanism: path vector routing

→ BPG update message

CS 536 Park

BGP route update:

−→ BGP update message propagation

BGP update message format:

ASNAk → · · ·→ ASNA2 → ASNA1; a.b.c.d/x

Meaning: ASN A1 (with CIDR address a.b.c.d/x) can be
reached through indicated path

−→ called path vector

−→ also AS-PATH

Some AS numbers:

• BBN: 1

• UUNET: 701

• Level3: 3356

• Abilene (aka “Internet2”): 11537

• AT&T: 7018

• Purdue: 17

CS 536 Park

Policy:

• if multiple AS-PATHs to target AS are known, choose
one based on policy

→ e.g., shortest AS path length, cheapest, least wor-
risome

• advertise to neighbors target AS’s reachability

→ also subject to policy

→ no obligation to advertise!

→ specifics depend on bilateral contract (SLA)

SLA (service level agreement):

−→ bandwidth (e.g., 1 Gbps)

−→ delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)

−→ also peak vs. average

−→ pricing (e.g., 1 Mbps: below $100)

−→ availability, etc.

CS 536 Park

Example:

AS A

AS H

AS F

AS G
AS E

AS D

AS C

AS B

StubProvider

A; a.b.c.d/xAS H

AS A
F −> C −> B −> A; a.b.c.d/x

B −> A; a.b.c.d/x

B −> A; a.b.c.d/x

D −> B −> A; a.b.c.d/x

G −> D −> B −> A; a.b.c.d/x

C −> B −> A; a.b.c.d/x
AS F AS C

AS B
AS D

AS G
AS E

Purdue: ASN 17; 128.10.0.0/16

CS 536 Park

Performance:

Route update frequency:

−→ routing table stability vs. responsiveness

−→ rule: not too frequently

−→ 30 seconds

−→ stability wins

−→ hard lesson learned from the past (sub-second)

−→ legacy: TTL

Other factors for route instability:

−→ selfishness (e.g., fluttering)

−→ BGP’s vector path routing: inherently unstable

−→ more common: slow convergence

−→ target of denial-of-service (DoS) attack

CS 536 Park

Route amplification:

−→ shortest AS path &= shortest router path

−→ e.g., may be several router hops longer

−→ AS graph vs. router graph

−→ policy: company in Denmark

Route asymmetry:

−→ routes are not symmetric

−→ estimate: > 50%

−→ mainly artifact of inter-domain policy routing

−→ various performance implications

−→ source traceback

CS 536 Park

Black holes:

−→ persistent unreachable destination prefixes

−→ BGP routing problems

−→ further aggrevated by DNS

