Routing

Problem: Given more than one path from source to destination, which one to take?

Features:

- Architecture
- Algorithms
- Implementation
- Performance

Internet routing: two separate routing subsystems

 \rightarrow intra-domain: within an organization

 \rightarrow inter-domain: across organizations

Ex.: Purdue to east coast (BU)

[109] infobahn:Routing % traceroute csa.bu.edu traceroute to csa.bu.edu (128.197.12.3), 30 hops max, 40 byte packets 1 cisco5 (128.10.27.250) 3.707 ms 0.616 ms 0.590 ms 2 172.19.60.1 (172.19.60.1) 0.406 ms 0.431 ms 0.520 ms tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.491 ms 0.600 ms 0.510 ms 3 gigapop.tcom.purdue.edu (192.5.40.134) 9.658 ms 1.966 ms 1.725 ms 4 5 192.12.206.249 (192.12.206.249) 1.715 ms 3.381 ms 1.749 ms chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 5.669 ms 8.319 ms 5.601 ms 6 7 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 25.626 ms 25.664 ms 25.621 ms 8 noxgs1-PO-6-O-NoX-NOX.nox.org (192.5.89.9) 30.634 ms 30.768 ms 30.722 ms 192.5.89.202 (192.5.89.202) 31.128 ms 31.045 ms 31.082 ms 9 10 cumm111-cgw-extgw.bu.edu (128.197.254.121) 31.287 ms 31.152 ms 31.146 ms 11 cumm111-dgw-cumm111.bu.edu (128.197.254.162) 31.224 ms 31.192 ms 31.308 ms 12 csa.bu.edu (128.197.12.3) 31.529 ms 31.243 ms 31.367 ms

Ex.: Purdue to west coast (Cisco)

```
[112] infobahn:Routing % traceroute www.cisco.com
traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte packets
 1 cisco5 (128.10.27.250) 0.865 ms 0.598 ms 1.282 ms
 2 172.19.60.1 (172.19.60.1) 0.518 ms 0.379 ms 0.405 ms
 3
   tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.687 ms 0.551 ms 0.551 ms
 4
   switch-data.tcom.purdue.edu (192.5.40.34) 3.496 ms 3.523 ms 2.750 ms
 5 so-2-3-0-0.gar2.Chicago1.Level3.net (67.72.124.9) 8.114 ms 20.181 ms 8.512 ms
 6 so-3-3-0.bbr1.Chicago1.Level3.net (4.68.96.41) 11.543 ms 9.079 ms 8.239 ms
 7
   ae-0-0.bbr1.SanJose1.Level3.net (64.159.1.129) 62.319 ms as-1-0.bbr2.SanJose1.Level3.net
 8
   ge-11-0.ipcolo1.SanJose1.Level3.net (4.68.123.41) 68.180 ms ge-7-1.ipcolo1.SanJose1.Level
 9
   p1-0.cisco.bbnplanet.net (4.0.26.14) 75.006 ms 72.557 ms 70.377 ms
   sjce-dmzbb-gw1.cisco.com (128.107.239.53) 66.075 ms 69.223 ms 68.350 ms
10
```

```
11 sjck-dmzdc-gw1.cisco.com (128.107.224.69) 65.650 ms 74.358 ms 69.952 ms
```

12 ^C

Three levels: LAN, intra-domain, and inter-domain

Tel-210 to HAWK

- \rightarrow extended LAN
- \rightarrow e.g., internetwork of Ethernet/WLAN switches
- \rightarrow bridge functionality

Approaches:

- flooding (i.e., broadcasting)
 - \rightarrow inefficient
 - \rightarrow must deal with switching loops
 - \rightarrow potential vulnerability: broadcast storms
 - \rightarrow no TTL field in Ethernet header
 - \rightarrow solution: embed logical tree over physical LAN internetwork

First, discover who is where

 \rightarrow learning bridges

Discovery procedure:

- \bullet switch receives LAN packet on interface i with source MAC address A
 - \rightarrow remember that A can be reached throughput interface i
- \bullet switch receives LAN packet destined to MAC address A
 - \rightarrow forward on interface i

Build logical spanning tree

- Perlman's algorithm: spanning tree protocol (STP)
- prune links to be loop-free
- other protocols

Inter-domain topology:

 \longrightarrow each dot (or node) is a domain (e.g., Purdue) \longrightarrow called autonomous system (AS): 16- or 32-bit ID

Inter-domain connectivity of Purdue:

- Level3 (AS 3356) \rightarrow INDIANAGIGAPOP (AS 19782) \rightarrow Purdue (AS 17)
- Internet2/Abilene (AS 11537) \rightarrow INDIANAGIGAPOP (AS 19782) \rightarrow Purdue (AS 17)
- \rightarrow changes over time (e.g., economic reasons)
- The Indy GigaPoP has its own AS number (19782).
- \rightarrow part of I-Light (Indiana state-wide project)
- \rightarrow located at IUPUI
- \rightarrow provides state-level connectivity including Purdue and IU

Level3 backbone network: www.level3.com

Centricity IP vention de CALINE Proved Line kantreal

 Activity
 Activity
 Berlahan
 Manual
 Berlahan
 Manual
 Berlahan
 Manual
 Berlahan
 Manual
 Berlahan
 Manual
 Berlahan
 Manual
 Berlahan
 <td

LEVEL 3 IP BACKBONE

 \rightarrow multi-Gbps backbone

 \rightarrow e.g., 1 Gbps, 10 Gbps, multiples of 10 Gbps

Abilene/Internet2 backbone: www.internet2.edu

via APAN/TransPAC: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREDNET2, PREGINET, SingAREN, TANET2, ThaiSARN, WIDE (v6) ** via GLORIAD: CSTNET, RBnet

AT&T (AS 7018)'s U.S. PoP topology (inferred):

Granularity of routing network:

- router
 - \rightarrow IP routing
 - \rightarrow note: LAN routing is invisible
- domain: autonomous system
 - \rightarrow 16- or 32-bit identifier ASN
 - \rightarrow extended to 32-bit in 2007
 - \rightarrow assigned by IANA along with IP prefix block (CIDR)
 - \rightarrow e.g., Purdue ASN: 17

Network topology

- \rightarrow i.e., connectivity
 - router graph
 - \rightarrow node: router
 - \rightarrow edge: physical link between two routers
 - AS graph
 - \rightarrow node: AS
 - \rightarrow edge: physical link between 2 or more border routers
 - \rightarrow sometimes at exchange point/network

Router type:

- access router
 - \rightarrow collects traffic from devices of a domain/network
 - \rightarrow distributes traffic to devices of a domain/network
- border router
 - \rightarrow interface between two or more domains
 - \rightarrow packet crosses administrative boundary
- backbone router
 - \rightarrow routers that form intradomain network
 - \rightarrow e.g., Purdue's backbone routers (ring)

AS type:

- stub AS: customer AS
 - \rightarrow no forwarding
 - \rightarrow may be multi-homed (more than one provider)
- transit AS
 - \rightarrow provide connectivity to stub AS's and smaller transit AS's
 - \rightarrow tier-1: global reachability and no provider above
 - \rightarrow tier-2 or tier-3: regional providers as well as customers of tier-1 AS's

Inter-AS relationship: bilateral

• customer-provider: customer subscribes bandwidth from provider

 \rightarrow customer can reach provider's reachable IP space

- peering:
 - \rightarrow only the peer's IP address and below
 - \rightarrow the peer's provider's address space: invisible

Common peering:

- among tier-1 providers
 - \rightarrow ensures global reachability
 - \rightarrow exclusive club
 - \rightarrow less regulated than telephony
- among tier-2 providers
 - \rightarrow regional providers
 - \rightarrow economic factors
- among stubs
 - \rightarrow economic factors
 - \rightarrow e.g., content provider and access ("eyeball") provider
 - \rightarrow e.g., Time Warner and AOL

Route or path: criteria of goodness

- hop count
- delay
- bandwidth
- loss rate

Composition of goodness metric:

 \longrightarrow quality of end-to-end path

- \bullet additive: hop count, delay
- min: bandwidth
- multiplicative: loss rate

Goodness of routing:

- \longrightarrow assume N users or sessions
- \longrightarrow suppose path metric is delay

Two approaches:

- system optimal routing
 - \rightarrow choose paths to minimize $\frac{1}{N} \sum_{i=1}^{N} D_i$
 - \rightarrow good for the system as a whole
- user optimal routing
 - \rightarrow each user *i* chooses path to minimize D_i
 - \rightarrow selfish route selections by each user
 - \rightarrow end result may not be good for system as a whole

Pros/cons:

- system optimal routing:
 - good: minimizes delay for the system as a whole
 - bad: complex and difficult to scale up
- user optimal routing:
 - good: simple
 - bad: may not make efficient use of resources
 - \rightarrow low utilization
 - \rightarrow recall "tragedy of commons" in congestion control

Two pitfalls of user optimal routing:

• fluttering or ping pong effect

 \rightarrow induced synchronization

- Braess paradox
 - \rightarrow adding more resources (extra link) can make things worse

- 6 users sending 1 Mbps traffic
- \bullet delay on shared link increases with traffic volume x

- 3 users will take $A \to B \to D$
- 3 users will take $A \to C \to D$
- delay experienced per user:

 $\rightarrow (5 \cdot 3 + 1) + (3 + 25) = 44$

Resource provisioning:

 \longrightarrow high bandwidth link is added between B and C

- User 1: $A \to B \to C \to D$ (13)
- User 2: $A \to B \to C \to D$ (23)
- User 3: $A \to B \to C \to D$ (33)
- User 4: $A \to B \to C \to D$ (43)
- User 5: $A \to B \to D$ (52)
- User 6: $A \to C \to D$ (52)

- delay of link $A \rightarrow B$ has increased to $5 \cdot 5 + 1 = 26$
- same for delay of link $C \to D$

 \rightarrow user 1's cost has increased from 13 to 53

 \rightarrow users 2, 3, 4: same cost increase to 53

Higher than per user cost 44 without high bandwidth link.

 \longrightarrow why did adding link degrade performance?

Increasing resource should improve things but has the opposite effect

- \longrightarrow D. Braess (1969)
- \longrightarrow paradox possible due to user optimal routing
- \longrightarrow cannot arise in system optimal routing

Modus operandi of the Internet: user optimal routing

 \longrightarrow simplicity wins the day

Conceptually related problem in operating systems?