LINK LAYER TECHNOLOGIES

Ethernet

- \rightarrow CSMA/CD, switched
- \rightarrow copper, fiber

Evolution:

- 10Base5 (ThickNet): coax, segment length 500 m, 100 nodes/segment
- 10Base2 (ThinNet): coax, segment length 200 m, 30 nodes/segment
- 10Base-T: category 3, 4, 5 UTP, segment length 100 m, 1024 nodes/segment
- 100Base-T (Fast Ethernet): cat 5 UTP; fiber
- 1000Base-T (GigE): copper
 - \rightarrow IEEE 802.3ab: cat 5, up to 100 m

- IEEE 802.3z
 - \rightarrow 1000Base-SX: multi-mode fiber
 - \rightarrow 1000Base-LX: single-mode fiber
- 10, 40, 100, 400 Gbps Ethernet: fiber; cat 6, 7 copper
 - \rightarrow 100, 200, 400 Gbps: backbone trunk link, data center links
- IEEE 802.3ck: copper
- IEEE 802.3db: multi-mode fiber
- IEEE 802.3cs: single-mode fiber, subscriber network with reach up to 50 km
- IEEE 802.3dj: 200, 400, 800 Gbps, 1.6 Tbps

Active, on-going.

Ethernet technology evolution:

- single-homed, multi-homed
- unique 48-bit Ethernet address per NIC
 - \longrightarrow ancient stuff but ...

Technology reused in powerline networks: IEEE 1901, HomePlug industry group

Addressing:

- 48-bit unique address
 - \rightarrow called hardware or MAC address
- broadcast address: all 1's

Sender: adds "from" and "to" address

 \rightarrow source and destination

Receiver: Ethernet NIC accepts frames with matching destination address.

- default
- can accept all frames
 - \rightarrow promiscuous mode
 - \rightarrow requires root privilege
 - → useful for traffic monitoring/sniffing

DIX Ethernet frame:

IEEE 802.3 Ethernet frame:

- \rightarrow type: e.g., 0x0800 for IPv4
- \rightarrow DIX dominant: incorporated into IEEE standard

Modulation: baseband

Cat 4, 10Base-T, Manchester encoding

- \rightarrow bit rate is 1/2 of symbol rate (baud)
- \rightarrow use modulation to facilitate clock synchronization

Cat 5, FastEthernet (IEEE 802.3u), 4B5B encoding

- \rightarrow 4 data bits replaced by 5 code bits
- $\rightarrow 0000 \rightarrow 11110, 1111 \rightarrow 11101$
- \rightarrow use coding to facilitate clock synchronization
- \rightarrow data rate 100 Mbps, symbol rate 125 MHz
- \rightarrow full-duplex, 2 pairs

Cat 5/5e, GigE (IEEE 802.3ab), 5-level PAM

- \rightarrow 4 levels for data: 2 bits
- \rightarrow 5th level for error correction
- \rightarrow mix of signal modulation and coding
- \rightarrow data rate 1000 Mbps
- $\rightarrow 4$ pairs, 250 Mbps over each pair
- \rightarrow full-duplex achieved using hybrid circuits
- \rightarrow technology from telephony

Today: 10, 40, 100, 400, 800 Gbps and higher over fiber and copper.

Ethernet MAC protocol: CSMA/CD

• MA (Multiple Access): multiple nodes are allowed simultaneous access

- \rightarrow just send
- CS (Carrier Sense): can detect if some other node is using the link
 - \rightarrow rule: if busy, wait until channel is not busy
- CD (Collision Detection): can detect frame collision stemming from simultaneous transmissions
 - \rightarrow rule: if collision, try later

Collision detection mechanism:

 \rightarrow broadcast signal

Collision scenario: best-case

 \rightarrow meet in the middle

Collision scenario: worst-case

- τ : one-way propagation delay
- \bullet sender needs to wait 2τ sec before detecting collision
 - \rightarrow time needed to hear collision signal
 - \rightarrow must wait for 2τ
- for 2500 m length, 51.2 μ s round-trip time (2 τ)
 - \rightarrow enforce 51.2 μ s slot time
- at 10 Mbps, 512 bits: minimum frame size
 - \rightarrow assures collision detection

Transmit at least 512 bits for CD:

$$\rightarrow$$
 6 + 6 + 2 + 46 + 4 = 64 B = 512 bits

→ minimum payload size of Ethernet frame

To achieve collision detection (CD) in 100 Mbps Ethernet:

 \rightarrow length restriction

Too restrictive: not needed in switched Ethernet

Upon collision: when attempt retransmission?

 \rightarrow stop-and-wait with collision signal as negative ACK

Retransmission protocol: exponential backoff

- 1. Wait for random $0 \le X \le 51.2 \ \mu s$ before 1st retry
- 2. Two consecutive collisions: wait for random $0 \le X \le 102.4 \ \mu s$ before 2nd retry
- 3. Three consecutive collisions: wait for random $0 \le X \le 204.8 \ \mu s$ before 3rd retry
- 4. *i* consecutive collisions: wait for $0 \le X \le 2^{i-1} 51.2 \ \mu s$ before next attempt
- 5. Give up if i > 16
- \rightarrow why exponential backoff?
- \rightarrow how good is throughput of CSMA/CD?

Today: switched Ethernet with full-duplex links

- not shared bus anymore
 - → every device connected by point-to-point link to switch
 - → sender/receiver cannot collide
 - \rightarrow switch: a computer
 - → with special hardware support to speed up packet handling
- arriving Ethernet frames subject to scheduling
 - \rightarrow e.g., FIFO, priority, fair queueing
 - \rightarrow finite buffers: who is dropped?
 - \rightarrow frame losses occur due to buffer overflow
 - \rightarrow not collision

Real-world constraint of backward compatibility:

- legacy Ethernet NICs speak CSMA/CD
- switched Ethernet interoperate with legacy NICs
 - → constraint of new networking technologies

Links between high-speed Ethernet switches:

- \rightarrow less complications
- \rightarrow turn off CSMA/CD
- \rightarrow Ethernet in short-haul data center, long-haul backbone links
- \rightarrow one of the technologies in vehicle networks