Bluetooth: IEEE 802.15.1

 \rightarrow PAN (personal area network)

Features:

- overlapping 2.4 GHz ISM frequency band
 - \rightarrow 2.402–2.480 GHz
- divide into 79 carrier frequencies (i.e., channels) $\rightarrow 1$ MHz bandwidth each
- target range ~ 10 m
- bandwidth range 125 Kbps–2 Mbps
 - \rightarrow between WLAN and IoT (Internet of Things)
 - \rightarrow has become key IoT enabling technology

Centralized master/slave architecture:

- $\rightarrow 1$ master (M), up to 7 slave (S) devices
- \rightarrow polling based MAC protocol
- \rightarrow contention-free

Bluetooth MAC:

- M selects S to communicate with
 - \rightarrow round-robin
- frequency hopping
 - \rightarrow 1600 hops per second
- TDMA with 625 μ sec time slots
- \bullet TDD: M even slots, S odd slots
- adaptive
 - \rightarrow avoid crowded frequencies
 - \rightarrow channel map

Operation:

- two modes
 - \rightarrow SCO (synchronous connection oriented): isochronous streaming, no retransmission
 - \rightarrow ACL (asynchronous connectionless): interactive, retransmission
- nominal bandwidth: 1 Mbps (version 1.2), up to 2 Mbps (versions 3–5)
 - \rightarrow enhanced data rate: 24 Mbps (3.x–4.x), 50 Mbps (5.x)
- pairing: shared private key
 - \rightarrow PIN based
 - \rightarrow incorporation of cryptographic primitives

- BLE (Bluetooth Low Energy):
- \rightarrow Bluetooth versions 1.x–3.x: speed
- \rightarrow 4.x: focus on reducing energy consumption
- \rightarrow v5.x (v5.4): power efficiency, reliability, security
- \rightarrow applications: smart phones + IoT and variants
- \rightarrow e.g., automobiles (e.g., smart phone instead of fob as key, TPMS), home automation (e.g., light bulbs, door-locks, security cams)

Operate at lower data rate

- \rightarrow e.g., 125 Kbps–2 Mbps
- \rightarrow event-driven by slave device: interrupt vs. polling
- \rightarrow initiation through advertisement packets
- \rightarrow focus: minimize energy consumption at slave devices

Device initiated advertisement:

- 40 channels vs. 79 for classic Bluetooth
- 3 used for advertisement
- \bullet advertisement interval: configurable 20 ms–10.24 s
- central device monitors channel activity: discovery
- \bullet responds to establish connection for data transfer
- initiated by central device, peripheral device passive

Increasing advertisement interval decreases energy consumption

- \rightarrow application dependent
- \rightarrow asymmetry assumption: peripheral vs. central device
- \rightarrow central device: large battery capacity or connected power source

ZigBee: IEEE 802.15.4

 \rightarrow low bit rate: 250 Kbps

Features

- \bullet 2.4 GHz ISM
 - $\rightarrow 16$ channels
 - \rightarrow plus 868 MHz and 915 MHz bands
- uses CSMA MAC protocol
 - \rightarrow data, ack, beacon, control frames
- both short- and long-range
 - \rightarrow 10 m (PAN) and 100+ m (e.g., sensor networks)

In practice, functional overlap with Bluetooth and WLAN \rightarrow future uncertain

Control Area Network (CAN): ISO 11898

 \rightarrow dominant standard for vehicular networks

CAN is dominant but on-going developments driven by changing needs.

 \rightarrow CAN, LIN, Ethernet, MOST, etc. \rightarrow intra- vs. inter-vehicle CAN architecture:

- twisted pair copper with differential coding
 - \rightarrow similar to FastEthernet and telephone wires
- \bullet maximum bandwidth 1 Mbps
 - \rightarrow 5 Mbps on CAN-FD (flexible data-rate)
- connect tens of ECUs (electronic control units) in vehicles
 - \rightarrow engine, transmission, brake, suspension, sensors, lights, battery, navigation, infotainment, etc.
 - \rightarrow some more critical than others
 - \rightarrow real-time constraints
- MAC protocol: CSMA/CD
 - \rightarrow what's going on?
 - \rightarrow non-destructive arbitration (NDA)

- CAN data frame format
- \rightarrow 1-bit SOF (start-of-frame)
- \rightarrow 11-bit identifier (CAN 2.0A)
- \rightarrow 29-bit identifier (CAN 2.0B)
- \rightarrow control, payload, CRC, EOF (end-of-frame) bits

Role of 11-bit identifier field

- \rightarrow packet priority
- \rightarrow 00000000000: highest priority

CAN HI (red) signal:

- \rightarrow high voltage bit value 1
- \rightarrow low voltage bit value 0

- bus arbitration method: wired-AND
- collision does not lead to frame destruction \rightarrow TDMA time slots are not wasted

CSMA/CD with NDA: works as long as there is one clear winner

- \rightarrow one highest priority (i.e., identifier) frame
- \rightarrow careful design and operation

Suffers under weakness of priority scheduling

- \rightarrow delay of lower priority frames
- \rightarrow potential starvation
- \rightarrow lower priority does not imply unimportant

Scalability.

Works underway for implementing generalized real-time packet scheduling.

RFID (Radio Frequency Identification) and NFC (Near Field Communication):

- \rightarrow low-bit rate, short-distance wireless communication
- \rightarrow NFC: close proximity (inches)
- \rightarrow inductive/magnetic coupling

Device: two types

- reader/writer
- tag

Frequency band

- 125 KHz (unregulated): RFID
- 13.56 MHz (ISM): RFID, NFC
- \bullet others (e.g., 433.92 MHz, 915 MHz ISM)

Bandwidth

- \rightarrow from 4 Kbps up to 848 Kbps
- \rightarrow ISO 14443, 18000-x
- \rightarrow NFC Forum

Tag has battery power:

- yes: active
- no: passive
 - \rightarrow requires specialized techniques
 - \rightarrow focus

Passive: inductive coupling enabled communication

• reader energizes tag

 \rightarrow primary function

- clock synchronization
- backscatter
 - \rightarrow tag modulates reader's signal: e.g., AM
 - \rightarrow full duplex
- capacitor
 - \rightarrow transient energy store
 - \rightarrow half duplex

- MAC protocol: polling
- \rightarrow multiple tags: collision
- \rightarrow e.g., inventory systems

Reader detects collision

- instruct tags to randomize
 - \rightarrow tags inject pseudo-random delay: i.e., CA
- tree walking
 - \rightarrow binary search

Three operating modes in NFC

- reader/writer
- card emulation
 - \rightarrow e.g., smartphone acts as tag
- peer-to-peer

 \rightarrow symmetric