
- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'

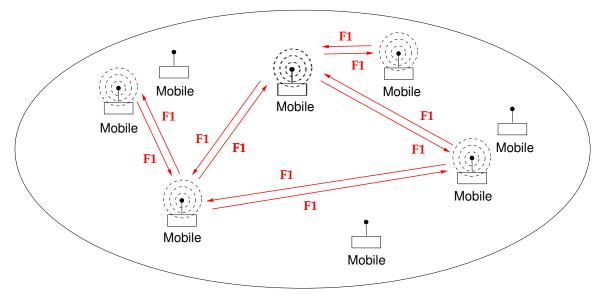
Ex.: ALOHANET

- data network over radio frequency
- Univ. of Hawaii, 1971; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet
 - \rightarrow parallel to wired packet switching technology
- carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- bit rate: 9.6 kb/s
- contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames (stop-and-wait)

Wireless LAN (WLAN): infrastructure mode

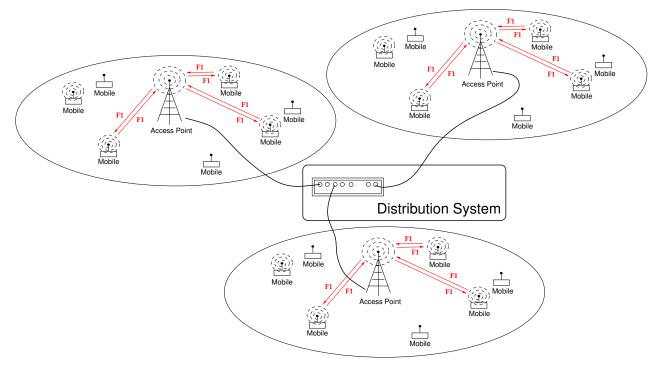
WLAN: Infrastructure Network


 \longrightarrow shared uplink & downlink channel F1

• basic service set (BSS)

 \rightarrow "hot spot"

- SSID (service set identifier): name/label of BSS
- base station: access point (AP)
- mobile stations must communicate through AP


WLAN: ad hoc mode

WLAN: Ad Hoc Network

- \longrightarrow homogeneous: no base station
- \longrightarrow everyone is the same
- \longrightarrow share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

- \longrightarrow internetworking between BSS's through APs
- \longrightarrow mobility and handoff
- extended service set (ESS): shared SSID
- APs are connected by distribution system (DS) \rightarrow typically: Ethernet switch

How do APs and Ethernet switches know where to forward frames?

- \rightarrow spanning tree
- \rightarrow IEEE 802.1 (Perlman's algorithm)

Learning bridge: source address discovery

- \rightarrow log source MAC address of incoming frames per interface
- \rightarrow initially (or if unclear): broadcast
- \rightarrow simple form of routing
- \rightarrow adequate for small systems

Misconfiguration issues resulting in loops

 \rightarrow modifications to spanning tree algorithm

Additional headache: mobility

- \rightarrow roaming
- \longrightarrow how to perform handoff
- \longrightarrow mobility management at link vs. network layer
- \longrightarrow link layer handoff dominant (vs. Mobile IP)

Mobility between BSS's in an ESS

- Association
 - \rightarrow registration process
 - \rightarrow AP sends out periodic beacon frame
 - \rightarrow mobile station (MS) associates with one AP
- Disassociation
 - \rightarrow upon permanent departure: notification

Handoff from old to new AP:

- Reassociation
 - \rightarrow movement of mobile from one AP to another
 - \rightarrow mobile initiated
 - \rightarrow e.g., AP's signal strength is low
 - \rightarrow passive (beacon) or active (probe) scanning to find alternate AP
 - \rightarrow go through association process
- Handoff
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames from old to new AP in ESS

IEEE 802.11b/g WLAN spectrum 2.4-2.4835 GHz:

- $\rightarrow 11$ channels (U.S.)
- \rightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz
- \rightarrow unlicensed ISM (Industrial, Scientific, Medical) band
- \rightarrow global: 2.4–2.4835 GHz
- \rightarrow up to 14 channels (e.g., Japan)

IEEE 802.11a: 5.15–5.35 GHz and 5.725–5.825 GHz

- \rightarrow UNNI (unlicensed National Information Infrastructure)
- $\rightarrow 23$ non-overlapping channels

IEEE 802.11n: both 2.4 and 5 GHz

- \rightarrow 2.4 GHz: backward compatible
- $\rightarrow 802.11$ g/n: OFDM
- \rightarrow uses multiple antennae
- \rightarrow called MIMO (multiple input multiple output)
- \rightarrow parallel transmission

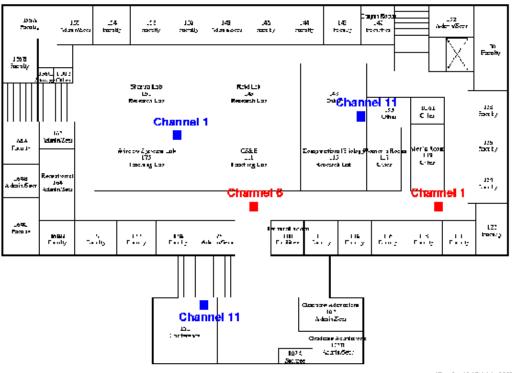
IEEE 802.11ac: extension of n/g with more streams, 256-QAM

- \rightarrow Wi-Fi 5
- $\rightarrow 5 \text{ GHz}$
- \rightarrow multi user (MU)-MIMO: transmit to multiple users using multiple antennae
- \rightarrow AP (access point) performs subcarrier allocation

IEEE 802.11ax: Wi-Fi 6 and 6E

- $\rightarrow 1024 \text{ QAM}$
- \rightarrow Wi-Fi 6E uses 6 GHz band: 5.925-7.125 GHz
- $\rightarrow \text{OFDMA}$
- \rightarrow BSS coloring: energy conservation and spatial reuse
- IEEE 802.11be: Wi-Fi 7
- $\rightarrow 4096 \text{ QAM}$
- \rightarrow bandwidth increased to 320 MHz from 160 MHz
- \rightarrow multi-link: parallel transmission over 2.4, 5, 6 GHz bands

BSS coloring advantage example: WLAN in HAAS


Non-interference specification for 2.4 GHz band (802.11b)

- \bullet each channel has 22 MHz bandwidth
- require 25 MHz channel separation
 - \longrightarrow thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

HAAS: BSS's belonging to CS and NSL

First floor frequency reuse:

Computer Science Building - First Floor

Weilder 21 30:1444-000

First floor:

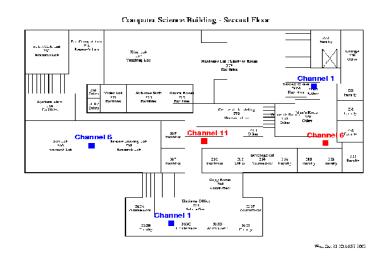
- \rightarrow APs: color CS BSS frames blue and NSL frames red
- \rightarrow if blue station on channel 1 senses blue frame transmission then wait
- \rightarrow if blue station on channel 1 senses red frame transmission then do not wait

Two benefits.

Spatial frequency reuse: if blue channel 1 area is well separated from red channel 1 area, simultaneous frame transmission in the two areas will likely succeed

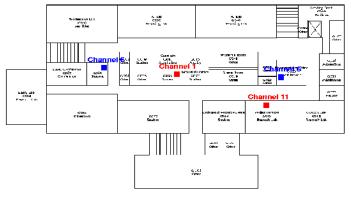
 \rightarrow despite collision

 \rightarrow capture effect


Park

Energy conservation: as soon as different frame coloring detected, stop decoding frame which reduces processing, hence energy consumption

Second floor example:

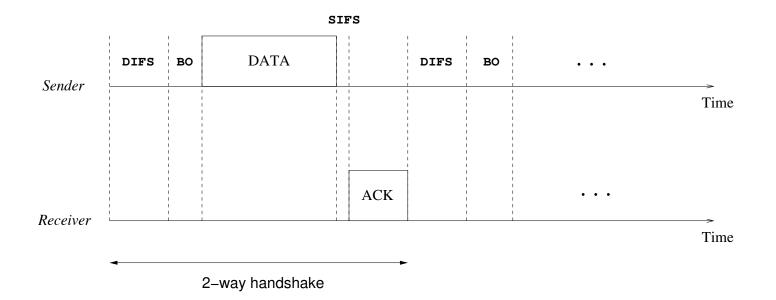

- \rightarrow channel 6 coloring: same as first floor
- \rightarrow channel 1 coloring: different coloring for two CS APs

Second floor frequency reuse:

Ground floor frequency reuse:

Computer Science Building - Ground Floor

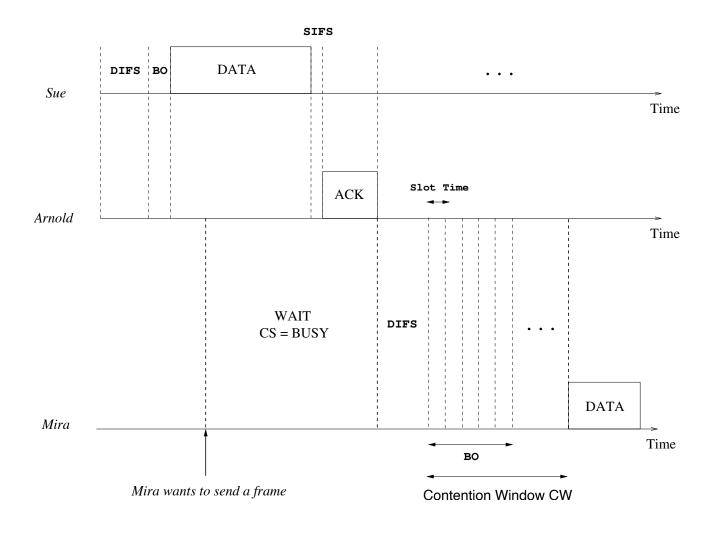
we_loc.31.50.17.19.5005

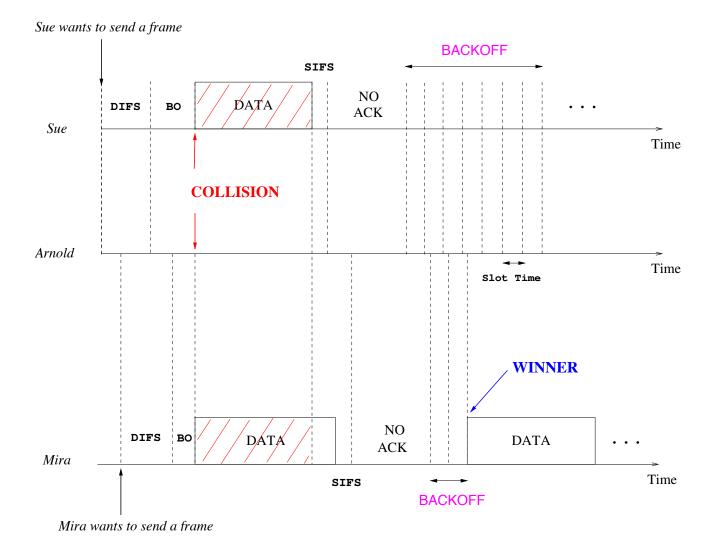

Basic IEEE 802.11 medium access control (MAC):

- \longrightarrow CSMA/CA with exponential backoff
- \longrightarrow explicit positive ACK frame
- \longrightarrow optional feature: CA (collision avoidance)

Two modes for MAC operation:

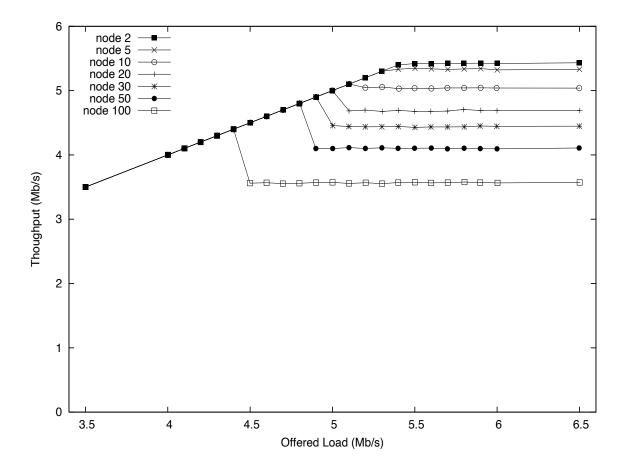
- Distributed coordination function (DCF)
 - \rightarrow uses CSMA
- Point coordination function (PCF)
 - \rightarrow polling-based priority
 - \rightarrow telephony support
 - \rightarrow not used
- Addition of OFDMA resource reservation in Wi-Fi 6
 - \rightarrow based on CA


Timeline without collision:

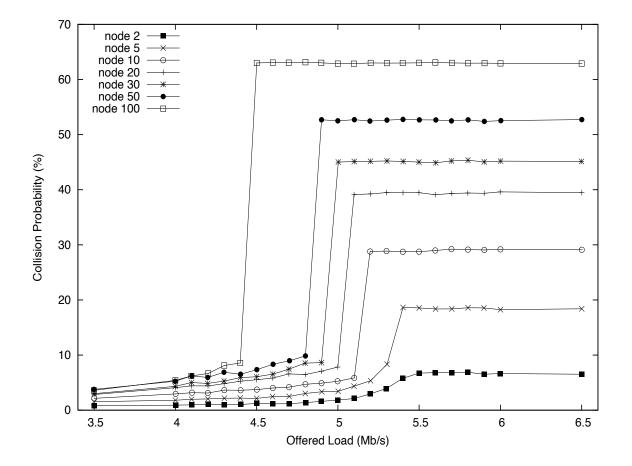

- SIFS (short interframe space): 10 μs
- Slot Time: 20 μs
- DIFS (distributed interframe space): 50 μs
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)
 - \rightarrow CWmin: 31; CWmax: 1023

Time snapshot with Mira-come-lately:

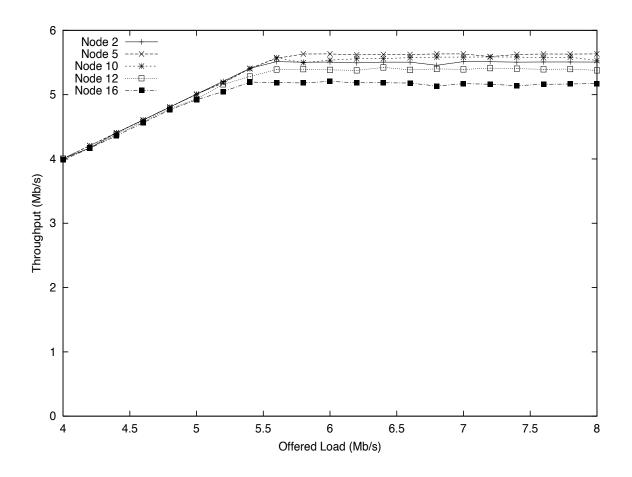
- \rightarrow Sue sends to Arnold
- \rightarrow Mira joins competition later



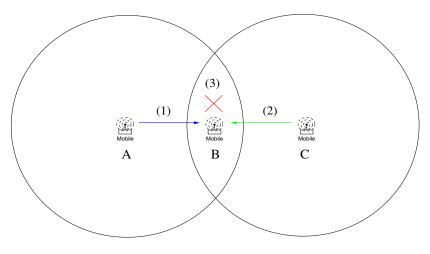
Time snapshot with collision (Sue & Mira):


MAC throughput (802.11b):

\rightarrow simulation


MAC collision:

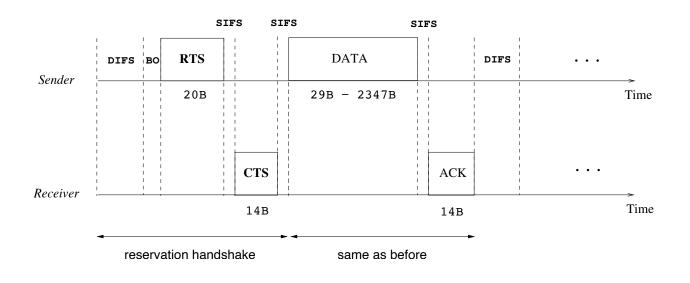
\rightarrow simulation



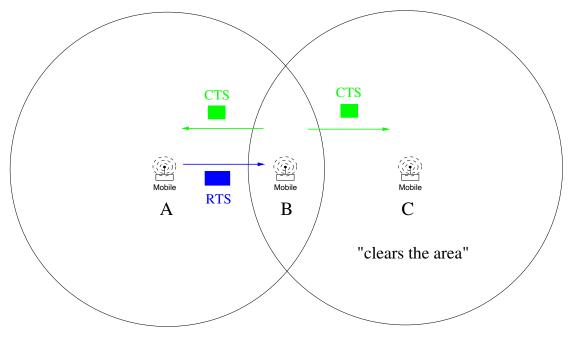
\rightarrow experiment

\rightarrow HP iPAQ pocket PCs running Linux

Hidden station problem:



Hidden Station Problem


- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

Hidden station problem: introduce CA feature

- \longrightarrow RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send

Hidden station problem: RTS/CTS handshake "clears" hidden area

RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold \rightarrow why not for small data?

Was not utilized in real-world deployments \rightarrow repurposed OFDMA resource reservation in Wi-Fi 6

OFDMA resource reservation by AP in IEEE 802.11ax and 802.11be

- \rightarrow subcarriers bundled into resource units (RUs)
- \rightarrow TXOP (transmit opportunity) feature of 802.11e

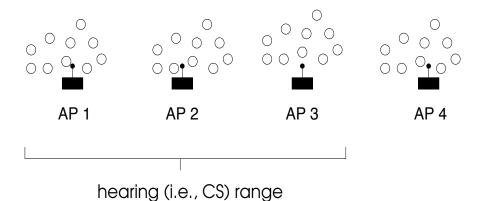
At TXOP, AP acts as coordinator and scheduler: allocate RUs to stations for downlink and uplink communication

Downlink:

- \rightarrow AP transmits special RTS, MU (multiuser)-RTS
- \rightarrow MU-RTS contains RU assignment
- \rightarrow stations not allocated RU remain silent
- \rightarrow CTS handshake: RU-assigned stations send CTS via OFDMA
- \rightarrow final ACK hands hake to check reliable transmission

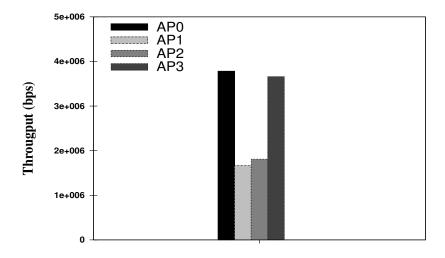
Unfairness problem of WLAN:

• spatial diversity


 \rightarrow multi-path propagation

 \bullet CSMA

 \rightarrow different user density


 \rightarrow CS disadvantages those who can hear more

Example: four 802.11 hot spots, each with 10 clients \rightarrow e.g., 4 neighboring coffee shops on a street \rightarrow approximate range limitation of WLAN: ~100 m

- $\rightarrow 3$ neighboring hot spots (BSS's) are within hearing range of each other
- \rightarrow AP1 and AP4 are outside CS range

Throughput at four hot spots:

- \rightarrow middle two get half the throughput
- \rightarrow depending on configuration, can be even less