Network performance Networks: speed at a premium - \rightarrow if slow typically not used in practice - \rightarrow e.g., cryptographic protocols tend to be turned off at routers due to overhead Network design approach: - \rightarrow emphasis on lightweight network core - \rightarrow push heavyweight stuff toward the edge (i.e., host/server) - \rightarrow called end-to-end paradigm - \rightarrow historically: guided Internet design and evolution - \rightarrow other approaches have been tried and failed ### Performance yardsticks: - bandwidth in bps (bits-per-second) - \rightarrow from bandwidth of physical media (Hz) to bps - \rightarrow link bandwidth ignoring slow-down due to resource contention protocols - throughput (bps): includes software layer overhead - \rightarrow firmware in NIC and device driver in OS - \rightarrow in practice: app/user space overhead lead to further slow-down - latency and delay in msec (millisecond) - \rightarrow latency: signal propagation speed (SOL) - \rightarrow processing and buffering delay (queueing) - jitter: delay variation - \rightarrow average delay small but max delay large - \rightarrow bad for multimedia Meaning of "high-speed" networks: • signal propagation speed is bounded by SOL (speed-of-light) - $\rightarrow \sim 186 \text{K miles/s} (\sim 300 \text{K km/s})$ - \rightarrow optical fiber, copper: slower than SOL - Ex.: latency from Purdue to West Coast - \rightarrow for 2000 miles: \sim 10 msec (= 2000/186000) - \rightarrow lower bound - Ex.: geostationary satellites at \sim 22.2K miles - \rightarrow latency: \sim 120 msec - \rightarrow end-to-end (one-way): \sim 240 msec - \rightarrow round-trip (two-way): \sim 480 msec - \rightarrow roughly: half a second - \rightarrow fundamental limitation faced by apps ### Meaning of high-speed: - a single bit cannot go faster - \rightarrow can only increase bandwidth (bps): bits packed into 1 second - \rightarrow analogous to widening highway, i.e., more lanes - \rightarrow also called broadband - interpretation of high-speed \Leftrightarrow many lanes - \rightarrow effect: completion time of large files shorter - \rightarrow in this sense, "higher" speed - \rightarrow for small files: marginal benefit - \rightarrow Internet workload: most files are small, minority is very large - \rightarrow but: minority consumes bulk of network bandwidth # Example network pics: Purdue's backbone network Level 3 (tier-1 ISP) backbone network: www.level3.com \rightarrow now part of CenturyLink - \rightarrow 10 Gbps backbone (green): same speed as Purdue - \rightarrow outdated pic: faster backbone speeds now (40, 100, 400 Gbps) ### What is traveling on the wires? #### Mixture of: Bulk data (data, image, video, audio files), voice, streaming video/audio, real-time interactive data (e.g., games, social media, etc.), AI related traffic. - \rightarrow bulk of Internet traffic has been TCP file traffic - → primarily a giant client/server system Multimedia (video/audio) streaming: rapid rise - \rightarrow streaming video: e.g., YouTube, Netflix - \rightarrow real-time: e.g., VoIP, video conferencing, games - → target of traffic delimiting and shaping (e.g., fine print of "unlimited" data plans) Example: traffic is "bursty": MPEG compressed real-time video #### Reason: - video compression - \rightarrow utilize inter-frame compression - burstiness is not good for networks Example: 90/10 (or 80/20) property - \rightarrow called "mice and elephants" - \rightarrow spikes caused by elephants - \rightarrow target of active traffic control (e.g., TCP) - \rightarrow most flows are mice - \rightarrow limited efficacy of feedback control #### How to make sense of all this? We will investigate three aspects: - Architecture - \rightarrow system design, real-world manifestation - Algorithms - \rightarrow how do the components work - Implementation - \rightarrow how are they actually implemented - \rightarrow additional complications Key concern and common thread: performance - \rightarrow slow means likely not used in practice - \rightarrow performance heavily influences architecture, algorithm, implementation