Network performance

Networks: speed at a premium

- \rightarrow if slow typically not used in practice
- \rightarrow e.g., cryptographic protocols tend to be turned off at routers due to overhead

Network design approach:

- \rightarrow emphasis on lightweight network core
- \rightarrow push heavyweight stuff toward the edge (i.e., host/server)
- \rightarrow called end-to-end paradigm
- \rightarrow historically: guided Internet design and evolution
- \rightarrow other approaches have been tried and failed

Performance yardsticks:

- bandwidth in bps (bits-per-second)
 - \rightarrow from bandwidth of physical media (Hz) to bps
 - \rightarrow link bandwidth ignoring slow-down due to resource contention protocols
- throughput (bps): includes software layer overhead
 - \rightarrow firmware in NIC and device driver in OS
 - \rightarrow in practice: app/user space overhead lead to further slow-down
- latency and delay in msec (millisecond)
 - \rightarrow latency: signal propagation speed (SOL)
 - \rightarrow processing and buffering delay (queueing)
- jitter: delay variation
 - \rightarrow average delay small but max delay large
 - \rightarrow bad for multimedia

Meaning of "high-speed" networks:

• signal propagation speed is bounded by SOL (speed-of-light)

- $\rightarrow \sim 186 \text{K miles/s} (\sim 300 \text{K km/s})$
- \rightarrow optical fiber, copper: slower than SOL
- Ex.: latency from Purdue to West Coast
 - \rightarrow for 2000 miles: \sim 10 msec (= 2000/186000)
 - \rightarrow lower bound
- Ex.: geostationary satellites at \sim 22.2K miles
 - \rightarrow latency: \sim 120 msec
 - \rightarrow end-to-end (one-way): \sim 240 msec
 - \rightarrow round-trip (two-way): \sim 480 msec
 - \rightarrow roughly: half a second
 - \rightarrow fundamental limitation faced by apps

Meaning of high-speed:

- a single bit cannot go faster
 - \rightarrow can only increase bandwidth (bps): bits packed into 1 second
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow also called broadband
- interpretation of high-speed \Leftrightarrow many lanes
 - \rightarrow effect: completion time of large files shorter
 - \rightarrow in this sense, "higher" speed
 - \rightarrow for small files: marginal benefit
 - \rightarrow Internet workload: most files are small, minority is very large
 - \rightarrow but: minority consumes bulk of network bandwidth

Example network pics: Purdue's backbone network

Level 3 (tier-1 ISP) backbone network: www.level3.com \rightarrow now part of CenturyLink

- \rightarrow 10 Gbps backbone (green): same speed as Purdue
- \rightarrow outdated pic: faster backbone speeds now (40, 100, 400 Gbps)

What is traveling on the wires?

Mixture of:

Bulk data (data, image, video, audio files), voice, streaming video/audio, real-time interactive data (e.g., games, social media, etc.), AI related traffic.

- \rightarrow bulk of Internet traffic has been TCP file traffic
- → primarily a giant client/server system

Multimedia (video/audio) streaming: rapid rise

- \rightarrow streaming video: e.g., YouTube, Netflix
- \rightarrow real-time: e.g., VoIP, video conferencing, games
- → target of traffic delimiting and shaping (e.g., fine print of "unlimited" data plans)

Example: traffic is "bursty": MPEG compressed real-time video

Reason:

- video compression
 - \rightarrow utilize inter-frame compression
- burstiness is not good for networks

Example: 90/10 (or 80/20) property

- \rightarrow called "mice and elephants"
- \rightarrow spikes caused by elephants
- \rightarrow target of active traffic control (e.g., TCP)
- \rightarrow most flows are mice
- \rightarrow limited efficacy of feedback control

How to make sense of all this?

We will investigate three aspects:

- Architecture
 - \rightarrow system design, real-world manifestation
- Algorithms
 - \rightarrow how do the components work
- Implementation
 - \rightarrow how are they actually implemented
 - \rightarrow additional complications

Key concern and common thread: performance

- \rightarrow slow means likely not used in practice
- \rightarrow performance heavily influences architecture, algorithm, implementation