Technical distinction of LAN (local area network) vs. WAN (wide area network):

- LAN: point-to-point, multi-access
- WAN: internetwork
- \rightarrow geographical proximity is secondary although often goes hand-in-hand
- \rightarrow counter examples?

Naming: LAN and IP addresses are insufficient.

Often communicating entities are apps running as processes in a host/router operating systems (e.g., Linux, Windows, IOS).

- \rightarrow IP only specifies NIC of host/server/router
- \rightarrow device with with multiple NICs may have multiple IP addresses
- \rightarrow called multi-homed

To identify a process to whom a message is destined:

- \rightarrow use 16-bit port number supported by operating systems
- \rightarrow why not use process IDs?
- \rightarrow typical address: (IP address, port number) pair
- \rightarrow note: IP address must eventually be translated to LAN address

When is port number not needed?

Network performance

In networks, speed is at a premium:

- \rightarrow if slow, typically not used in practice
- \rightarrow e.g., cryptographic protocols tend to be turned off at routers

Network design approach:

- \rightarrow emphasis of lightweight network core
- \rightarrow push heavyweight stuff toward the edge (i.e., host/server)
- \rightarrow called end-to-end paradigm
- \rightarrow has guided Internet design and evolution
- \rightarrow other approaches have been tried and failed

Performance yardsticks:

- bandwidth in bps (bits-per-second)
 - \rightarrow physical bandwidth ignoring slow-down due to protocols
- throughput (bps): includes protocol overhead
 - \rightarrow protocol: firmware in NIC and device driver in OS
 - \rightarrow in practice: app and user space OS overhead lead to further slow-down
- latency in msec (millisecond)
 - \rightarrow signal propagation speed (roughly: speed of light)
 - \rightarrow processing and buffering delay (queueing)
- jitter: delay variation
 - \rightarrow average delay small but max delay large
 - \rightarrow bad for multimedia

Meaning of "high-speed" networks:

• signal propagation speed is bounded by SOL (speed-of-light)

 $\rightarrow \sim 186 \text{K miles/s} (\sim 300 \text{K km/s})$

- \rightarrow optical fiber, copper: slower than SOL
- Ex.: latency: Purdue to West Coast
 → for 2000 miles: ~10 msec (= 2000/186000)
 → lower bound
- Ex.: geostationary satellites at \sim 22.2K miles \rightarrow latency: \sim 120 msec
 - \rightarrow end-to-end (one-way): ~240 msec
 - \rightarrow round-trip (two-way): ~ 480 msec
 - \rightarrow roughly: half a second
 - \rightarrow shows up in news channel interviews

Meaning of high-speed:

- a single bit cannot go faster
 - \rightarrow can only increase bandwidth (bps): bits packed into 1 second
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow we will discuss how this packing is done

 \rightarrow also called broadband

- interpretation of "high-speed" ⇔ "many lanes"
 → what does it buy?
 - \rightarrow completion time of large files is faster
 - \rightarrow in this sense, "higher" speed
 - \rightarrow for small files: marginal benefit

Some units:

- Tbps, Gbps, Mbps, Kbps:
 - $10^{12},\ 10^9,\ 10^6,\ 10^3$ bits per second; indicates data transmission rate; influenced by clock rate (THz/GHz/MHz/ of underlying hardware
- \rightarrow communication speed: factors of 1000
- \rightarrow data size: 1 KB means 1024 by tes
- \rightarrow ballpark the same: exercise care when doing exact calculations

Example network pics: Purdue's backbone network

Level3 backbone network: www.level3.com

LEVEL 3 IP BACKBONE

- \rightarrow 10 Gbps backbone (green): same speed as Purdue
- \rightarrow outdated pic: faster backbone speeds now

What is traveling on the wires?

Mixture of:

bulk data (data, image, video, audio files), voice, streaming video/audio, real-time interactive data (e.g., games and some social media, etc.

- \rightarrow around 90% of Internet traffic has been TCP file traffic
- \rightarrow primarily a giant client/server system

Multimedia (video/audio) streaming: rapid rise

- \rightarrow streaming video: e.g., youtube, netflix
- \rightarrow real-time: e.g., VoIP, video conferencing, games
- \rightarrow target of traffic delimiting and shaping (e.g., fine print of "unlimited" data plans)

Internet traffic is "bursty": MPEG compressed real-time video

Reason:

- video compression
 - \rightarrow utilize inter-frame compression
- burstiness is not good for networks \rightarrow why?

How to make sense of all this?

We will investigate three aspects:

- architecture
 - \rightarrow system design, real-world manifestation
- algorithms
 - \rightarrow how do the components work
- implementation
 - \rightarrow how are they actually implemented
- A key concern and common thread: performance
- \rightarrow slow means not being used in practice
- \rightarrow performance heavily influences architecture, algorithm, implementation