Other approaches to solve address depletion problem:

• IPv6

- \rightarrow 128-bit addresses
- \rightarrow proposed mid-1990s
- \rightarrow IPv6 overhead and complexity
- \rightarrow resistance to wide-spread adoption
- \rightarrow IPv4 still dominant

IPv4 has found real-world workarounds limiting necessity of IPv6 deployment

- → IPv6 has found niche in ISP core/periphery
- \rightarrow e.g., periphery: cellular devices

IPv6 header format:

version 4	traffic class	flow label 20		
payload length 16		next header 8	hop limit 8	
source address 128				
destination address				

- traffic class: similar role as TOS field in IPv4
- flow label: flow label + source address
 - \rightarrow per-flow traffic management
 - \rightarrow significant extra bits
 - \rightarrow header size twice as large: 40 bytes

• next header: similar to IPv4 protocol field

- \rightarrow plus double duty for option headers
- → integrated with IPsec: authentication, encryption
- hop limit: same role TTL
- missing fields
 - → fragmentation header optional: only allowed at source

Network/socket programming

 \rightarrow slight differences compared to IPv4

Key features of IPv4 global Internet:

- Classless (vs. classful) IP addressing
- \rightarrow variable length subnetting
- \rightarrow that is, a.b.c.d/x (x: mask length)
- \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20

Prefix specifies organization: autonomous system

- \rightarrow IPv4 and IPv6 addresses allocated to autonomous systems
- \rightarrow Purdue University: ASN 17
- \rightarrow AT&T: ASN 7018 (and others)
- \rightarrow used in inter-domain routing
- \rightarrow CIDR (classless inter-domain routing)
- \rightarrow de facto global Internet addressing standard

- Dynamically assigned IP addresses
- \rightarrow share an IP address pool
- \rightarrow addresses are temporary
- \rightarrow used in access ISPs, enterprises, home networks, etc.
- \rightarrow e.g., WiFi hot spots

Past: Internet access ISPs exploit that only a fraction requires global Internet access at the same time

 \rightarrow serve large customer base with small IP address space

Today: residential customers expect to stay online continually

 \rightarrow limited saving effect of IP address space

DHCP (Dynamic Host Configuration Protocol):

 \rightarrow UDP-based client/server: server port 67, client port 68

- \rightarrow 4-way handshake (called DORA)
 - Discovery: DHCP client broadcasts request
 - \rightarrow destination IP 255.255.255, MAC address all 1's, source IP 0.0.0.0
 - Offer: DHCP server responds with IP address (and other relevant info)
 - \rightarrow client's MAC address (Ethernet type field 0x0800, IP protocol field 17)
 - \rightarrow UDP payload contains DHCP packet
 - Request: client accepts offered IP address
 - Ack: server confirms assignment

- Network address translation (NAT)
- \rightarrow use of both permanent private IP address and dynamic public IP address
- → address translation from private IP to public IP when accessing global Internet
- \rightarrow useful for enterprise networks, home networks, etc.

In practice: additional name translation layer

- \rightarrow configure local DNS (Domain Name System) server with private IP addresses
- \rightarrow local machines can communicate with each other using symbolic names
- \rightarrow DNS: global distributed name resolution database system

Example: recent change at Purdue to assign private addresses to lab and instructional machines

- \rightarrow amber01.cs.purdue.edu: 10.168.53.10
- \rightarrow borg01.cs.purdue.edu: 10.168.53.41
- \rightarrow data.cs.purdue.edu: 128.10.2.13

When amber01 accesses global Internet

- \rightarrow e.g., run web browser
- $\rightarrow 10.168.53.10$ translated to 128.10.127.250

Note: amber01.cs.purdue.edu not meaningful outside of Purdue

- \rightarrow only Purdue's DNS server configured to translate amber 01.cs. purdue.edu to 10.168.53.10
- ... IPv4 Address depletion problem remains

- NAPT: NAT + port number
- \rightarrow variant of NAT: borrow src port field as address bits

Ex.: 192.168.10.10 and 192.168.10.11 both map to single public address 128.10.27.10; in addition

- \rightarrow 192.168.10.10 maps to 128.10.26.10:6001
- \rightarrow 192.168.10.11 maps to 128.10.26.10:6002

What about port numbers of 192.168.10.10 and 192.168.10.11?

- \rightarrow e.g., client process bound to 192.168.10.10:22222
- \rightarrow e.g., client process bound to 192.168.10.11:33333

Does not matter: NAPT translation table entries

- \rightarrow 192.168.10.10:22222 maps to 128.10.26.10:6001
- \rightarrow 192.168.10.11:33333 maps to 128.10.26.10:6002

Example:

if 192.168.10.10:22222 is a web browser (say Firefox) down-loading web page from https://www.purdue.edu:443

 \rightarrow web server knows client as 128.10.27.10:6001

NAPT yields huge increase in effective IP address space

- \rightarrow IP address bits are increased to 48 (= 32 + 16)
- \rightarrow biggest factor preventing IP address depletion

Well-suited for systems with asymmetric traffic

- \rightarrow problem when running servers
- \rightarrow in general, need permanent IP addresses

Methods to host servers/peers behind DHCP gateway

 \rightarrow NAPT traversal problem

• Proxies

- \rightarrow e.g., Internet telephony service: clients contact well-known server—server knows their dynamic addresses
- → server informs client its peer's dynamic IP address and port number
- \rightarrow peers talk directly to each other
- \rightarrow called UDP hole punching (can be extended to TCP)

• Relays

- \rightarrow peers communicate through intermediary
- → full-fledged service: VPN (virtual private network)
- Gateway configuration protocols
- → e.g., UPnP IGD (Internet Gateway Device)
- \rightarrow limitations

CIDR and dynamically assigned IP addresses with NAPT alleviated IPv4 address depletion problem

- \rightarrow significant increase of Internet's effective address space
- \rightarrow IPv4 still dominant

Last free IPv4 address block allocated by IANA (suborganization of ICANN) to regional registries early 2011

→ RIRs: ARIN, RIPE, APNIC, LACNIC, AFRINIC

Last available/recovered address pool allocated mid-2014

- \rightarrow from central Internet authorities to autonomous systems
- \rightarrow ISPs manage their own address blocks

IPv6 has found foothold in ISP intranet and explosion of customer premises equipment (e.g., mobile devices)

- \rightarrow struggled to find relevance since introduction in mid-1990s
- \rightarrow draft standard 1998
- \rightarrow full standard 2017

IPv6 benefit in ISP environment

 \rightarrow no need for NAT for mobile-to-mobile and mobile-to-IPv6 server communication

In general

- \rightarrow dual stack overhead
- \rightarrow e.g., my cell phone: 12.75.17.199, 2600:387:11:39d::e (with a few bit flips)