Other approaches to solve address depletion problem:

- IPv6
- \rightarrow 128-bit addresses
- \rightarrow who wants it (or doesn't want it)?
- \rightarrow IPv4 still dominant

IPv4 has found real-world work arounds limiting necessity of IPv6 deployment

- \rightarrow repurposing of existing resources
- \rightarrow IPv6: complexity and overhead
- \rightarrow backward compatibility and cost

version 4	traffic class 8	flow label 20		
payload length 16			next header 8	hop limit 8
source address 128				
destination address 128				

- traffic class: similar role as TOS field in IPv4
- flow label: flow label + source address
 - \rightarrow per-flow traffic management
 - \rightarrow significant extra bits
 - \rightarrow header size twice as large: 40 by tes

- next header: similar to IPv4 protocol field
 - \rightarrow plus double duty for option headers
 - \rightarrow integrated with IPsec: authentication, encryption
- hop limit: same role TTL
- missing fields
 - \rightarrow fragmentation header optional: only allowed at source

Key features of IPv4 global Internet:

- Classless (vs. classful) IP addressing
- \rightarrow variable length subnetting
- \rightarrow that is, a.b.c.d/x (x: mask length)
- \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
- Prefix specifies organization: autonomous system
- \rightarrow IPv4 (and IPv6) addresses allocated to autonomous systems
- \rightarrow Purdue University: ASN 17
- \rightarrow AT&T: ASN 17
- \rightarrow used in inter-domain routing
- \rightarrow CIDR (classless inter-domain routing)
- \rightarrow de facto global Internet addressing standard

- Dynamically assigned IP addresses
- \rightarrow share an IP address pool
- \rightarrow reusable
- \rightarrow e.g., DHCP (dynamic host configuration protocol)
- \rightarrow UDP-based client/server protocol (ports 67/68)
- \rightarrow used in access ISPs, enterprises, home networks, etc.
- \rightarrow customer premises equipment: almost persistent IPv4 addresses

Note: WLANs, cellular connections, modem dial-up connections, etc. are more dynamic, temporary.

- Network address translation (NAT)
- \rightarrow dynamically assigned + address translation
- \rightarrow private vs. public IP address
- \rightarrow private: Internet routers discard them
- \rightarrow e.g., 192.168.0.0 is private
- \rightarrow 10.x.x.x are also private
- \rightarrow useful for home networks, small businesses
- \rightarrow also industry and university research labs

Example: private intranet

 \bullet intranet NICs have 10.0.0.0/24 addresses

 \rightarrow each interface: a separate subnet

• only one of the routers connected to Internet

• NAPT (NAT + port)

 \rightarrow variant of NAT: borrow src port field as address bits

Ex.: 192.168.10.10 and 192.168.10.11 both map to 128.10.27.10 but

 \rightarrow 192.168.10.10 maps to 128.10.26.10:6001

 \rightarrow 192.168.10.11 maps to 128.10.26.10:6002

What about port numbers of 192.168.10.10 and 192.168.10.11? \rightarrow e.g., client process bound to 192.168.10.10:22222 \rightarrow e.g., client process bound to 192.168.10.11:33333

Doesn't matter: NAPT translation table entries \rightarrow 192.168.10.10:22222 maps to 128.10.26.10:6001 \rightarrow 192.168.10.11:33333 maps to 128.10.26.10:6002 For example:

if 192.168.10.10:22222 is a web browser (say Firefox) downloading web page from www.purdue.edu:80

- \rightarrow web server knows client as 128.10.27.10:6001
- \rightarrow no ambiguity or confusion
- \rightarrow similarly for 192.168.10.11:33333

NAPT yields huge increase in effective IP address space \rightarrow IP address bits are increased to 48 (= 32 + 16) \rightarrow biggest factor preventing IP address depletion

Technical problems with NAPT?

Difficult to run servers behind DHCP intranet:

- \rightarrow how to discover server's dynamic IP address?
- \rightarrow how to discover server's dynamic port number?
- \rightarrow NAT traversal problem

Old solution: pay more to ISP to get fixed public IP address and port number

 \rightarrow not a good customer solution

 \rightarrow lots of P2P apps, VoIP, gaming, etc.

- 1. Proxies/relays
- \rightarrow e.g., Skype: clients contact well-known server—server knows their dynamic addresses
- \rightarrow server informs client its peer's dynamic IP address and port number
- \rightarrow peers can talk to each directly
- \rightarrow also called UDP/TCP hole punching
- 2. Enhanced gateway capabilities
- \rightarrow e.g., IGD (Internet Gateway Device) in UPnP
- \rightarrow IGD compliant router allows user to specify desired port number
- \rightarrow not much help with dynamic IP address
- \rightarrow user communicates desired port number via UPnP protocol

Ex.: SOHO (small office/home office)

 \longrightarrow now: home networking

- dynamic IP address provided by ISP is shared through NAT
- recall: private IP addresses

 $\rightarrow 10.0.0/8, 172.16.0.0 - 172.31.255.255, 192.168.0.0/16$

DHCP: 2-phase protocol

- 1. Discovery
- \rightarrow client sends broadcast discovery message (UDP, client port 68, server port 67) on LAN
- \rightarrow one or more DHCP servers respond with dynamic IP address
- 2. Allocation
- \rightarrow client sends broadcast message requesting selected IP address
- \rightarrow DHCP server confirms assignment
- DHCP does other network configuration chores:
- \rightarrow provides DNS server names
- \rightarrow first-hop router/gateway
- \rightarrow subnet mask

CIDR and dynamically assigned IP addresses with NAPT \rightarrow significant increase of Internet's effective address space \rightarrow saved the day

Last free IPv4 address block allocated by IANA (suborganization of ICANN) to regional registries early 2011 \rightarrow RIRs: ARIN, RIPE, APNIC, LACNIC, AFRINIC

Last available/recovered address pool allocated mid-2014

- \rightarrow from central Internet authorities to autonomous systems
- \rightarrow ISPs manage their own address blocks
- \rightarrow unused address blocks

Back to address space crunch?

- \rightarrow recurrent push for IPv6
- \rightarrow ISPs and companies reluct ant
- \rightarrow technical, overhead, and cost issues
- \rightarrow not backward compatible with IPv4
- \rightarrow must use separate compatibility mechanisms (e.g., tunneling, hybrid sockets)
- \rightarrow not-so-pleasant history/memories