Other approaches to solve address depletion problem:

- IPv6
 → 128-bit addresses
 → who wants it (or doesn’t want it)?
 → IPv4 still dominant

IPv4 has found real-world workarounds limiting necessity of IPv6 deployment
 → repurposing of existing resources
 → IPv6: complexity and overhead
 → backward compatibility and cost
IPv6 header format:

<table>
<thead>
<tr>
<th>version</th>
<th>traffic class</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>payload length</th>
<th>next header</th>
<th>hop limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>source address</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
</tr>
</tbody>
</table>

- traffic class: similar role as TOS field in IPv4
- flow label: flow label + source address
 → per-flow traffic management
 → significant extra bits
 → header size twice as large: 40 bytes
• next header: similar to IPv4 protocol field
 → plus double duty for option headers
 → integrated with IPsec: authentication, encryption
• hop limit: same role TTL
• missing fields
 → fragmentation header optional: only allowed at source
Key features of IPv4 global Internet:

- Classless (vs. classful) IP addressing
 → variable length subnetting
 → that is, $a.b.c.d/x$ (x: mask length)
 → e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20

Prefix specifies organization: autonomous system

→ IPv4 (and IPv6) addresses allocated to autonomous systems

→ Purdue University: ASN 17
→ AT&T: ASN 17

→ used in inter-domain routing
→ CIDR (classless inter-domain routing)
→ de facto global Internet addressing standard
- Dynamically assigned IP addresses
 → share an IP address pool
 → reusable
 → e.g., DHCP (dynamic host configuration protocol)
 → UDP-based client/server protocol (ports 67/68)
 → used in access ISPs, enterprises, home networks, etc.
 → customer premises equipment: almost persistent IPv4 addresses

Note: WLANs, cellular connections, modem dial-up connections, etc. are more dynamic, temporary.
• Network address translation (NAT)
 → dynamically assigned + address translation
 → private vs. public IP address
 → private: Internet routers discard them
 → e.g., 192.168.0.0 is private
 → 10.x.x.x are also private
 → useful for home networks, small businesses
 → also industry and university research labs
Example: private intranet

- intranet NICs have 10.0.0.0/24 addresses
 → each interface: a separate subnet
- only one of the routers connected to Internet
• NAPT (NAT + port)
 → variant of NAT: borrow src port field as address bits

Ex.: 192.168.10.10 and 192.168.10.11 both map to 128.10.27.10

but

→ 192.168.10.10 maps to 128.10.26.10:6001
→ 192.168.10.11 maps to 128.10.26.10:6002

What about port numbers of 192.168.10.10 and 192.168.10.11?
→ e.g., client process bound to 192.168.10.10:22222
→ e.g., client process bound to 192.168.10.11:33333

Doesn’t matter: NAPT translation table entries
→ 192.168.10.10:22222 maps to 128.10.26.10:6001
→ 192.168.10.11:33333 maps to 128.10.26.10:6002
For example:

if 192.168.10.10:22222 is a web browser (say Firefox) downloading web page from www.purdue.edu:80
→ web server knows client as 128.10.27.10:6001
→ no ambiguity or confusion
→ similarly for 192.168.10.11:33333

NAPT yields huge increase in effective IP address space
→ IP address bits are increased to 48 (= 32 + 16)
→ biggest factor preventing IP address depletion

Technical problems with NAPT?
Difficult to run servers behind DHCP intranet:

→ how to discover server’s dynamic IP address?

→ how to discover server’s dynamic port number?

→ NAT traversal problem

Old solution: pay more to ISP to get fixed public IP address and port number

→ not a good customer solution

→ lots of P2P apps, VoIP, gaming, etc.
Two methods:

1. Proxies/relays
 → e.g., Skype: clients contact well-known server—server knows their dynamic addresses
 → server informs client its peer’s dynamic IP address and port number
 → peers can talk to each directly
 → also called UDP/TCP hole punching

2. Enhanced gateway capabilities
 → e.g., IGD (Internet Gateway Device) in UPnP
 → IGD compliant router allows user to specify desired port number
 → not much help with dynamic IP address
 → user communicates desired port number via UPnP protocol
Ex.: SOHO (small office/home office)

→ now: home networking

- dynamic IP address provided by ISP is shared through NAT
- recall: private IP addresses

→ 10.0.0.0/8, 172.16.0.0–172.31.255.255, 192.168.0.0/16
DHCP: 2-phase protocol

1. Discovery
 → client sends broadcast discovery message (UDP, client port 68, server port 67) on LAN
 → one or more DHCP servers respond with dynamic IP address

2. Allocation
 → client sends broadcast message requesting selected IP address
 → DHCP server confirms assignment

DHCP does other network configuration chores:
 → provides DNS server names
 → first-hop router/gateway
 → subnet mask
CIDR and dynamically assigned IP addresses with NAPT
→ significant increase of Internet’s effective address space
→ saved the day

Last free IPv4 address block allocated by IANA (suborganization of ICANN) to regional registries early 2011
→ RIRs: ARIN, RIPE, APNIC, LACNIC, AFRINIC

Last available/recovered address pool allocated mid-2014
→ from central Internet authorities to autonomous systems
→ ISPs manage their own address blocks
→ unused address blocks
Back to address space crunch?

→ recurrent push for IPv6

→ ISPs and companies reluctant

→ technical, overhead, and cost issues

→ not backward compatible with IPv4

→ must use separate compatibility mechanisms (e.g., tunneling, hybrid sockets)

→ not-so-pleasant history/memories