FDM: send bits using EM waves

 $\rightarrow n$ users; one user sends one bit

Key variable: frequency f of sinusoid

- $\rightarrow \sin ft$
- $\rightarrow f$: carrier frequency
- \rightarrow low amplitude: 0, high amplitude: 1

To transmit multiple bit streams concurrently:

- \rightarrow use multiple carrier frequencies f_1, f_2, \dots, f_n
- \rightarrow dividing up frequency
- → FDM (frequency division multiplexing)
- → called WDM (wave division multiplexing) for optical fiber

Two primary application scenarios:

- multi-user: one user gets one frequency
 - → FDMA (frequency division multiple access)
- single-user: one user gets all frequencies
 - \rightarrow ship bits in parallel
 - \rightarrow completion time to ship group of bits is reduced

Other applications: wireless

• confidentiality: protect against eavesdropping by randomly jumping around multiple frequencies

- \rightarrow frequency hopping
- \rightarrow transmission is sequential
- anti-jamming: spreading bits over multiple frequencies makes jamming harder
- frequency-selective fading
 - \rightarrow some frequencies suffer more distortion than others
 - \rightarrow use error correction

Referred to as spread spectrum

- \rightarrow bits are spread over a wide range of frequencies
- \rightarrow width from f_1 to f_n called bandwidth (Hz)
- \rightarrow e.g., $n=10, f_1=1$ GHz, $f_{10}=1.9$ GHz, bandwidth 0.9 GHz

Fundamental engineering caveat: nature cannot be accurately captured by real numbers

- \rightarrow must use complex numbers
- \rightarrow not just because solving $x^2=-1$ demands $i=\sqrt{-1}$

Use complex sinusoids

- $\rightarrow \cos ft + i\sin ft$
- \rightarrow by Euler's formula

$$e^{ift} = \cos ft + i\sin ft$$

Correspondence to linear algebra used in CDMA . . .

Linear algebra used in CDMA:

- finite dimension n: number of users
 - \rightarrow each user sends a single bit
- fix basis vectors $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$: code vectors
 - \rightarrow orthogonal
 - \rightarrow span *n*-dimensional vector space
- ullet any vector ${f z}$ expressed as weighted sum of basis vectors

$$\rightarrow \mathbf{z} = \sum_{k=1}^{n} a_k \mathbf{x}^k$$

- to send n bits construct \mathbf{z} by hiding the n bits in the scalar weights a_k for $k = 1, \ldots, n$
 - \rightarrow called synthesis
 - \rightarrow **z** encodes *n* bits
 - \rightarrow **z**: message

 \bullet user i decodes sent bit from message \mathbf{z} by computing

$$\rightarrow \mathbf{z} \circ \mathbf{x}^i = a_i$$

- \rightarrow by orthogonality of basis vectors (i.e., codes)
- \rightarrow called analysis

In FDMA with complex sinusoids:

- infinite dimensional space
 - \rightarrow time is unbounded and continuous
- basis elements:
 - \rightarrow complex sinusoids e^{ift} for different f
- ullet signals s(t) of interest are weighted sum of e^{ift} with weight a_f

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} a_f e^{ift} df$$

Note: analogous to $\mathbf{z} = \sum_{k=1}^{n} a_k \mathbf{x}^k$

- $\rightarrow \sum$ becomes \int since frequency f is continuous
- \rightarrow called inverse Fourier transform
- \rightarrow synthesis
- \rightarrow as before: hide bits in the weights a_f

Given signal s(t)—our message (corresponds to \mathbf{z})—in whose sinusoid coefficients we have hidden bits

To recover the bits: compute

$$a_f = \int_{-\infty}^{\infty} s(t)e^{-ift}dt$$

- \rightarrow define as $a_f = s(t) \circ e^{ift}$
- \rightarrow analogous to $\mathbf{z} \circ \mathbf{x}^i$
- \rightarrow called Fourier transform
- \rightarrow analysis: find coefficient a_f
- \rightarrow possible because complex sinusoids are mutually orthogonal

Computing Fourier transform quickly is important

- \rightarrow fast Fourier transform (FFT)
- \rightarrow same goes for synthesis: IFFT
- \rightarrow subject of CS 580

To send n bits in parallel:

- \rightarrow use *n* frequencies f_1, f_2, \ldots, f_n
- \rightarrow message: discrete and finite sum

$$s(t) = \sum_{k=1}^{n} a_k e^{if_k t}$$

 \rightarrow synthesis

How to choose n carrier frequencies f_1, f_2, \ldots, f_n ?

- traditional method
 - \rightarrow insert sufficient gap between neighboring carrier frequencies
 - \rightarrow guard band
 - \rightarrow we will see why
- modern method: OFDM (orthogonal FDM)
 - \rightarrow gap can be significantly smaller
 - \rightarrow more carrier frequencies

Traditional method (FDM):

Consider AM modulation of single sinusoid of frequency f, say $f=100~\mathrm{MHz}$

- \rightarrow one user sends multiple bits: 011001
- \rightarrow previously: one bit per user
- \rightarrow new signal s(t)

Fact:

- resembles sinusoid but not the same
- what is it?
- \rightarrow precise characterization possible
- \rightarrow take a different viewpoint of s(t)

Switch from synthesis view to and analysis view

- \rightarrow signal s(t) is linear combination (i.e., weighted sum) of complex sinusoids
- \rightarrow signature of s(t)
- \rightarrow its "DNA"

Synthesis:

• complex sinosoids form a basis for a large family of functions s(t)

- includes signals encountered in engineered and natural systems
- hence, s(t) can be expressed as a weighted sum

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} a_f e^{ift} df$$

- \rightarrow weight a_f signifies how important frequency f is for synthesis
- \rightarrow for pure sinusoid of frequency f, $a_g = 0$ for all $g \neq f$
- \rightarrow sending sequence of bits over carrier frequency f makes some $a_g \neq 0$

Sending single bit vs. stream of bits using carrier frequency $f=100~\mathrm{MHz}$

- \rightarrow signature changes from single impulse to bump
- $\rightarrow a_g$ values near a_f become non-zero
- \rightarrow new signature of modulated signal s(t)

What other sinusoids (besides 100 MHz) need to be added together to get signal s(t)?

If s(t) only needs a bounded range of frequencies

- \rightarrow bandlimited
- \rightarrow practical real-world signals
- \rightarrow bounded range is called s(t)'s bandwidth (Hz)

"Bandwidth" overloaded term: not to be confused with

- bps bandwidth (e.g., 1 Gbps link)
- transmission medium (optical fiber, copper, wireless) characterized by bandwidth (Hz)

Networking deals with bandlimited signals

 \rightarrow when not bandlimited approximate as bandlimited

Example: signal created by

$$\rightarrow s(t) = \sin 10t + 3\sin 20t + \sin 30t$$

Spectrum of signal

 \rightarrow 10 Hz: 1

 \rightarrow 20 Hz: 3 (contributes most)

 \rightarrow 30 Hz: 1

Example: three signals created by

$$\rightarrow s(t) = 0.1 \sin 1t + \sin 2t + 0.1 \sin 3t$$

$$\rightarrow s(t) = 0.05 \sin 1t + \sin 2t + 0.05 \sin 3t$$

$$\rightarrow s(t) = \sin 2t$$

Example: spectrum of square wave

- \rightarrow signal considered difficult to synthesize using sinusoids
- \rightarrow infinite spectrum: sinc function

Practical approach: since sinusoids with small weights don't contribute much

- \rightarrow ignore: approximation
- \rightarrow i.e., treat as if weights are zero
- \rightarrow cut-off and approximate

Back to one sender transmitting multiple bits:

- \rightarrow using AM to send bits causes frequency spreading
- → from single impulse to bump in frequency domain

Causes problem for multiple senders if their bumps overlap

 \rightarrow interference

Inter-channel interference (ICI):

- \rightarrow distortion introduced by spreading can make decoding bits difficult
- \rightarrow simple filtering does not work

Example: two parallel bit streams carried on carrier frequencies 100 MHz and 101 MHz

Good case: ICI does not impact decoding bits

 \rightarrow signal spreading around 100 MHz and 101 MHz does not overlap

Bad case: ICI impacts decoding bits

- \rightarrow superposition of overlapping spectra
- \rightarrow Alice and Bob will have difficulty decoding their respective bit streams
- \rightarrow inverse problem

Thus: to prevent ICI sufficiently separate neighboring carrier frequencies

- \rightarrow guardband
- → traditional FDM approach: still used today

Drawback: limits how many carrier frequencies can be squeezed in a given frequency range

- \rightarrow i.e., spectral efficiency is low
- → network bandwidth is a scarce resource

First: all physical media possess bandwidth range (Hz) within which signals can be feasibly communicated

- → outside the physical medium's bandwidth: distortion too high
- \rightarrow technology limitation

Second: bandwidth constraint: regulation

 \rightarrow wireless electromagnetic spectrum

- \rightarrow logarithmic scale
- \rightarrow wireless spectrum: crowded
- \rightarrow spectral efficiency is premium

Modern approach to FDM: orthogonal FDM

 \rightarrow use sinusoids that are mutually orthogonal

 \rightarrow over finite time window τ

Complex sinusoids e^{if_it} and e^{if_jt} are orthogonal $(f_i \neq f_j)$:

$$e^{if_it} \circ e^{if_jt} = \int_{-\infty}^{\infty} e^{if_it} e^{-if_jt} dt = 0$$

Want:

$$\int_{-\tau/2}^{\tau/2} e^{if_i t} e^{-if_j t} dt = 0$$

- \rightarrow orthogonal f_1, f_2, \ldots, f_n over $[-\tau/2, \tau/2]$
- \rightarrow finite support
- $\rightarrow \tau$ is similar to baud: called symbol period
- \rightarrow duration of single bit

OFDM's advantage over FDM:

FDM:

OFDM:

 \rightarrow spectra can overlap

Pack more carrier frequencies within given a frequency band

 \rightarrow enhanced spectral efficiency

Technique considered since the mid-1960s

- \rightarrow practically feasible: DSP advances
- → FFT, inverse fast Fourier transform (IFFT)
- \rightarrow popular in both wireless and wired networks

How to find n mutually orthogonal sinusoids over finite time interval:

 \rightarrow choose harmonics of base frequency

Procedure: given target frequency band between f_a and f_b

- \rightarrow bandwidth: $W = f_b f_a$ (Hz)
 - \bullet choose n carrier frequencies:

$$\rightarrow f_a + (W/n), f_a + 2(W/n), \dots, f_a + n(W/n)$$

- \rightarrow carrier frequency spacing W/n
- set symbol period as $\tau = n/W$
 - \rightarrow increasing n results in increased symbol period: decrease in bps
 - \rightarrow increasing W results in decreased symbol period: increase in bps

Note:

• harmonic carrier frequencies f_1, f_2, \ldots, f_n are mutually orthogonal over finite time interval $[-\tau/2, \tau/2]$

- ullet every carrier frequency transmits one bit over symbol period au
- f_n (higher frequency carrier) transmits at same speed (bps) as f_1 (lower frequency carrier)
 - \rightarrow same symbol period τ

Trade-off:

- the more carrier frequencies n allocated within available bandwidth W, the longer the bit duration
 - \rightarrow time dilation
- the wider the bandwidth W, the shorter the bit duration
 - \rightarrow faster transmission

Conservation law: total bps over n parallel bit streams is conserved (i.e., remains invariant)

- \longrightarrow e.g., AM with 2 levels
- one carrier f_i : $1/\tau$ bps
- ullet all carriers (i.e., total capacity bps): $n \times 1/\tau$ bps
 - \rightarrow equals W since $\tau = n/W$
 - \rightarrow independent of n
 - \rightarrow no free lunch

Reflects Shannon's second theorem

- \rightarrow total capacity $\propto W$
- \rightarrow extra component: impact of noise

Example:

• Available bandwidth: $f_a = 2.4 \text{ GHz}$, $f_b = 2.5 \text{ GHz}$

$$\rightarrow W = 100 \text{ MHz}$$

- Number of carrier frequencies: n = 100
 - \rightarrow carrier spacing 100 MHz / 100 = 1 MHz
 - \rightarrow 2.401 GHz, 2.402 GHz, ..., 2.5 GHz
- Symbol period: $\tau = 100/100 \text{ MHz} = 1 \mu \text{sec}$
 - \rightarrow AM with 2 levels: 1 Mbps per user
 - \rightarrow total: 100 Mbps

Note:

• speed (bps) determined by bandwidth W, not base frequency f

- $\rightarrow W = 100 \text{ MHz} (2.5 \text{ GHz} 2.4 \text{ GHz})$
- \rightarrow not absolute frequency 2.4 GHz
- \rightarrow same bps for W = 100 MHz (5.5 GHz 5.4 GHz)
- OFDM information processing takes place at 1 μ sec time granularity
 - \rightarrow computational load affected by W and n
 - \rightarrow much slower than 2.4 GHz
- actual carrier frequency and physical transmission is separate translation step
 - → multiply 1 MHz bandwidth signal by 2.4 GHz sinusoid
 - \rightarrow 1 MHz data carrying signals get shifted to 2.4-2.5 GHz band

Wireless network example: IEEE 802.11g WLANs

- $\rightarrow 2.4$ GHz band
- \rightarrow uses OFDM
- $\rightarrow W = 20 \text{ MHz}, n = 64$
- \rightarrow carrier spacing 20 MHz / 64 = 312.5 kHz
- \rightarrow symbol time $\tau = 3.2 \ \mu s$

But: OFDM not used to support 64 users

- \rightarrow i.e., not OFDMA
- \rightarrow one user uses all 64 frequencies
- → multiple access (MA), i.e., sharing of bandwidth among users solved using higher layer protocol
- $\rightarrow CSMA/CA$

Similar approach for 802.11a/n in 5 GHz band.

 \rightarrow Wi-Fi 5

IEEE 802.11ax supports OFDMA

- \rightarrow Wi-Fi 6
- \rightarrow fundamentally different from CSMA/CA which is collision based
- \rightarrow same for Wi-Fi 7 (802.11be)
- \rightarrow ratified in 2024

Wired network example: ADSL

- \rightarrow part of ITU G.992.1 standard
- → UTP (unshielded twisted pair) copper wire
- $\rightarrow W = 1.104 \text{ MHz}, n = 256$
- \rightarrow carrier spacing 4.3125 kHz
- \rightarrow OFDM, not OFDMA

OFDMA under consideration for optical fiber communication

 \rightarrow extends WDM