FUNDAMENTALS OF INFORMATION TRANSMISSION - \longrightarrow applies to both wired and wireless networks - → wireless-specific features discussed separately ## Sending bits using physical signals Simplest case: hosts A and B are connected by point-to-point link \rightarrow e.g., A wants to send bits 011001 to B Choices for physical signals - sound waves: air pressure changes - underwater sonar: water pressure changes - light: electromagnetic waves - what else? Preferred mode for data communication: - \rightarrow electromagnetic (EM) waves - \rightarrow low latency (SOL) and large bandwidth (bps) - \rightarrow some undesirable properties too What is an electromagnetic wave? - → in principle: a complicated question involving quantum mechanics - \rightarrow still part of physics and engineering research In today's systems: only straightforward EM features are exploited View EM as a physical phenomenon/object which has a strength (or magnitude) that may vary over time. In simple form, a measurable quantity (or magnitude, amplitude, power, energy) varies in a regular fashion. \rightarrow i.e., oscillating sine curve Back to original problem: A wants to send B six bits 011001 \rightarrow use magnitude of sine waves high amplitude represents 1, low amplitude 0 (or vice versa) called amplitude modulation (AM) - \rightarrow i.e., modulate/manipulate amplitude to send bits - \rightarrow same concept as AM radio - \rightarrow difference? Three features of EM as sinusoid: - \rightarrow period (also called cycle): T - \rightarrow strength: amplitude - \rightarrow phase: shift in time How to utilize these features to communicate bits . . . \rightarrow beyond binary AM Basic properties of sinusoids: How many periods can we squeeze in per second? - \rightarrow frequency: 1/T - \rightarrow e.g., if period is 1 msec then frequency is 1000 cycles/sec - \rightarrow unit called Hertz (Hz) Another unit: length (m) - \rightarrow distance - \rightarrow how long is a period - \rightarrow i.e., footprint in space - \rightarrow empty space: e.g., 1 GHz EM sinusoid about 11.8 inches long - \rightarrow fiber optic cable? In computer networks, by default, frequency is used to specify EM \rightarrow sometimes period is used (esp. high frequency, e.g., 100's of GHz plus) Example: benefit of using frequency for AM to calculate bps - → bandwidth (bps) of point-to-point link - \rightarrow if frequency is 1 Hz then bandwidth 1 bps - \rightarrow if 1 MHz then 1 Mbps - \rightarrow if 1 GHz then 1 Gbps - \rightarrow if 1 THz then 1 Tbps Networking problem solved! \rightarrow not quite Issues with increasing frequency: One: increasing frequency requires increase in clock rate and processing speed - \rightarrow high cost - \rightarrow computing systems that control hardware operate at lower speeds - \rightarrow heavy lifting: computation Two: wireless propagation - \rightarrow above 10 GHz requires line-of-sight (LOS) - \rightarrow complications due to multi-path propagation - \rightarrow echos can be bad (and sometimes good) Three: multi-user communication → not just point-to-point links connecting two parties Example: wireless interference Joe receives bits from AT&T's cell tower, Mira from T-Mobile. - \rightarrow Joe also hears T-Mobile's signal, Mira hears AT&T's signal - \rightarrow interference - \rightarrow What does Joe's smart phone actually hear? Joe's device hears the sum of the two signals - \rightarrow property of electromagnetic waves - \rightarrow i.e., superposition - \rightarrow fundamental physics: linear - \rightarrow amenable to analysis and manipulation - \rightarrow basis for modern computer networks # Superposition of three sine waves: Example: multiplexing (i.e., intentional sharing of resources) - \rightarrow LWSN B148/HAAS G56 machines: A and B are Ethernet switches - \rightarrow A and B are routers/switches that forward multiple traffic streams - \rightarrow structured, orderly access Splitting time based on AM method of sending bits using sine waves: \rightarrow time-division multiplexing (TDM) Ex.: four bit streams sharing same link \rightarrow reserve time slots for each bit stream - \rightarrow user 1 gets slots 1, 5, 9, etc. - \rightarrow user 2 gets slots 2, 6, 10, etc. - \rightarrow router A: acts as multiplexer (MUX) or combiner - \rightarrow router B: acts as demultiplexer (DEMUX) or splitter TDM, or TDMA (time-division multiple access) when slots belong to multiple users, is popular in cellular systems and traditional landline telephone systems. \rightarrow simple but fundamental sharing technique Real-world TDMA example from wired world: - \rightarrow T1 carrier (1.544 Mbps) - \rightarrow goal: support 24 simultaneous users ("channels") ### Specs of T1 carrier: - 24 channels (i.e., users) - time slot: 8-bit block (each user sends 8 consecutive bits) - $24 \times 8 = 192$ bits of payload - plus 1 control bit: total 193 bits in a frame (unit of packaged data) - squeeze 8000 frames into 1 second time interval - \rightarrow frame duration: 125 μ sec - total bandwidth (bps): $8000 \times 193 = 1.544$ Mbps - per channel bandwidth (bps): $8000 \times 8 = 64 \text{ Kbps}$ - \rightarrow landline quality telephony service At one time, popular service sold by ISPs (mainly) to companies - \rightarrow 20+ years back, Purdue leased about 6–7 T1 lines for the entire WL campus - \rightarrow next level T3 line: 44.736 Mbps Today: residential subscriber can get 1 Gbps or faster download speed - \rightarrow uplink: significantly slower - \rightarrow bandwidth asymmetry - \rightarrow reflects client/server environment TDMA: important multi-user link transmission technology - \rightarrow works well if resource (e.g., frequency) is managed by central authority - \rightarrow single provider - \rightarrow otherwise: complications What we want: parallel lanes where multiple bit streams are transmitted simultaneously - \rightarrow essence of modern high-speed networks - \rightarrow key technology: use multiple frequencies - \rightarrow e.g., 1 GHz and 2 GHz for two parallel lanes How does using multiple frequencies for multiple lanes work? - \rightarrow classical method - \rightarrow improvements: our goal - \rightarrow modern broadband networks ### Roadmap: - start with CDMA - \rightarrow focus on coding: symbol processing - \rightarrow conceptual basis for analog methods - move on to FDMA - \rightarrow use analog signals (sinusoid) to send parallel bit streams - \rightarrow classical method - \rightarrow limitations - arrive at OFDM (orthogonal frequency division multiplexing) - \rightarrow extend FDMA to squeeze in more parallel lanes - \rightarrow increase bandwidth (bps) CDMA motivation: linear algebra approach for sending multiple bit streams Example: three users Alice, Bob, Mira - \rightarrow simplest case: cell tower wants to send each user 1 bit - \rightarrow but not TDMA Assign each user a 3-D vector: called code - \rightarrow (1,0,0) for Alice - \rightarrow (0,1,0) for Bob - \rightarrow (0,0,1) for Mira To send bit value 1 to Alice, 0 to Bob, 1 to Mira: - \rightarrow broadcast vector (1,0,1) to everyone - \rightarrow trivial: not much gained Allow negative values: \rightarrow send (1,-1,1): 1 means 1, -1 means 0 In general: let positive value means 1, negative value means 0 Example: assign Alice, Bob, Mira code vectors \rightarrow Alice: (1,-2,1) \rightarrow Bob: (3,5,7) \rightarrow Mira: (19,4,-11) The code vectors are stored in their smart phones. Cell tower transmits via broadcast: (17,-3,-17) - \rightarrow ignore how the cell tower transmits (17, -3, -17) via electromagnetic waves - \rightarrow upon receiving (17, -3, -17), how does Alice know what bit was sent? Solution: Alice calculates dot product of received vector (17, -3, -17) with her code vector (1, -2, 1). Definition of dot product: Given two 3-D vectors $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$, their dot (or inner) product is $$x \circ y = x_1 y_1 + x_2 y_2 + x_3 y_3$$ For Alice: $$(17, -3, -17) \circ (1, -2, 1) = 17 + 6 - 17 = 6 > 0$$ \rightarrow positive means bit 1 For Bob: $$(17, -3, -17) \circ (3, 5, 7) = 51 - 15 - 119 = -83 < 0$$ \rightarrow negative means bit 0 For Mira: $$(17, -3, -17) \circ (19, 4, -11) = 323 - 12 + 187 = 498 > 0$$ \rightarrow positive means bit 1 Why does this work? - \rightarrow what is special about (1,-2,1), (3,5,7), (19,4,-11) - \rightarrow where did (17,-3,-17) come from The three code vectors are mutually orthogonal: $x \circ y = 0$ Cell tower's job: send 1 to Alice, 0 to Bob, 1 to Mira Cell tower computes (17, -3, 17) to broadcast where $$(+1) \cdot (1, -2, 1) + (-1) \cdot (3, 5, 7) + (+1) \cdot (19, 4, -11)$$ = $(17, -3, 17)$ When Alice performs dot product of received vector (17,-3,-17) with her code vector (1,-2,1), it is equivalent to $$\left\{ (+1) \cdot (1, -2, 1) + (-1) \cdot (3, 5, 7) + (+1) \cdot (19, 4, -11) \right\}$$ $$\circ (1, -2, 1)$$ By orthogonality, the second and third terms vanish and what is left is $$\rightarrow (+1)(1,-2,1) \circ (1,-2,1) = 1+4+1=6>0$$ \rightarrow taking the dot product with oneself is always positive For Bob: $$\to (17, -3, -17) \circ (3, 5, 7) = 51 - 15 - 119 = -83 < 0$$ \rightarrow negative means bit 0 For Mira: $$\rightarrow (17, -3, -17) \circ (19, 4, -11) = 323 - 12 + 187 = 498 > 0$$ If we wanted the dot product for Alice to yield +1, Bob -1, Mira, +1, what to do? Why might we not want the result to be 1, -1, 1, but 6, -83, 498? CDMA (code division multiple access): using linear algebra, hide the bits to send in the coefficients of the code vectors. - \rightarrow in TDMA we divide time to transmit multiple bits in time slots - \rightarrow in CDMA, we "divide" code to transmit multiple bits as coefficients - \rightarrow coefficients are called spectrum In CDMA, coding is used to encode multiple bits before transmission using electromagnetic waves occurs. - \rightarrow separate (analog) stage - → omit here: will cover FDMA and OFDMA - \rightarrow driver in 90s-20s: QUALCOMM - \rightarrow e.g., Verizon, Sprint used CDMA in 3G cellular networks - \rightarrow retired in '22 and '23 Origin: military context (long history) → if code vectors are chosen to be random, additional feature of security (confidentiality) #### Generalize: To communicate n bits belonging to n users • Set-up: assign n orthogonal code vectors in n-dimensional vector space $$\rightarrow \mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$$ • Sender: to encode n data bits a_1, a_2, \ldots, a_n (+1 for 1, -1 for 0), compute $$\to \mathbf{z} = a_1 \mathbf{x}^1 + a_2 \mathbf{x}^2 + \dots + a_n \mathbf{x}^n$$ - \rightarrow **z** is an *n*-dimensional vector that hides *n* bits in its coefficients (spectra) - \rightarrow convert **z** into analog signal and transmit to all receivers • Receiver: to decode user i'th bit a_i , receiver computes dot product $$\rightarrow \mathbf{z} \circ \mathbf{x}^i = a_i(\mathbf{x}^i \circ \mathbf{x}^i) = a_i \times \text{positive constant}$$ \rightarrow by orthogonality Next: borrow the conceptual framework from linear algebra for hiding bits in electromagnetic waves - \rightarrow FDMA and OFDMA - \rightarrow replace *n*-dimensional vectors with continuous complex sinusoids - \rightarrow good news: much of the conceptual framework carries over