FUNDAMENTALS OF INFORMATION TRANSMISSION

- \longrightarrow applies to both wired and wireless networks
- → wireless-specific features discussed separately

Sending bits using physical signals

Simplest case: hosts A and B are connected by point-to-point link

 \rightarrow e.g., A wants to send bits 011001 to B

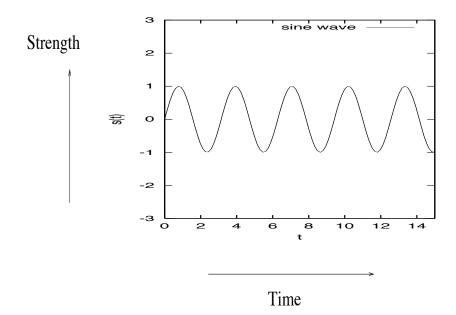
Choices for physical signals

- sound waves: air pressure changes
- underwater sonar: water pressure changes
- light: electromagnetic waves
- what else?

Preferred mode for data communication:

- \rightarrow electromagnetic (EM) waves
- \rightarrow low latency (SOL) and large bandwidth (bps)
- \rightarrow some undesirable properties too

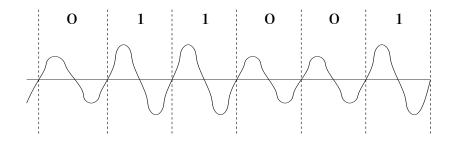
What is an electromagnetic wave?


- → in principle: a complicated question involving quantum mechanics
- \rightarrow still part of physics and engineering research

In today's systems: only straightforward EM features are exploited

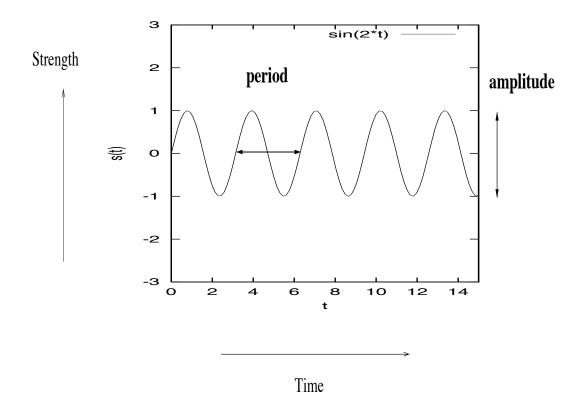
View EM as a physical phenomenon/object which has a strength (or magnitude) that may vary over time.

In simple form, a measurable quantity (or magnitude, amplitude, power, energy) varies in a regular fashion.


 \rightarrow i.e., oscillating sine curve

Back to original problem: A wants to send B six bits 011001

 \rightarrow use magnitude of sine waves


high amplitude represents 1, low amplitude 0 (or vice versa)

called amplitude modulation (AM)

- \rightarrow i.e., modulate/manipulate amplitude to send bits
- \rightarrow same concept as AM radio
- \rightarrow difference?

Three features of EM as sinusoid:

- \rightarrow period (also called cycle): T
- \rightarrow strength: amplitude
- \rightarrow phase: shift in time

How to utilize these features to communicate bits . . .

 \rightarrow beyond binary AM

Basic properties of sinusoids:

How many periods can we squeeze in per second?

- \rightarrow frequency: 1/T
- \rightarrow e.g., if period is 1 msec then frequency is 1000 cycles/sec
- \rightarrow unit called Hertz (Hz)

Another unit: length (m)

- \rightarrow distance
- \rightarrow how long is a period
- \rightarrow i.e., footprint in space
- \rightarrow empty space: e.g., 1 GHz EM sinusoid about 11.8 inches long
- \rightarrow fiber optic cable?

In computer networks, by default, frequency is used to specify EM

 \rightarrow sometimes period is used (esp. high frequency, e.g., 100's of GHz plus)

Example: benefit of using frequency for AM to calculate bps

- → bandwidth (bps) of point-to-point link
- \rightarrow if frequency is 1 Hz then bandwidth 1 bps
- \rightarrow if 1 MHz then 1 Mbps
- \rightarrow if 1 GHz then 1 Gbps
- \rightarrow if 1 THz then 1 Tbps

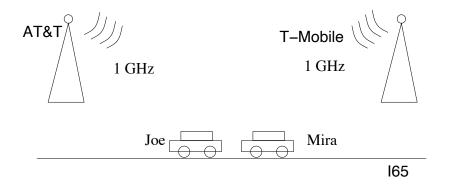
Networking problem solved!

 \rightarrow not quite

Issues with increasing frequency:

One: increasing frequency requires increase in clock rate and processing speed

- \rightarrow high cost
- \rightarrow computing systems that control hardware operate at lower speeds
- \rightarrow heavy lifting: computation

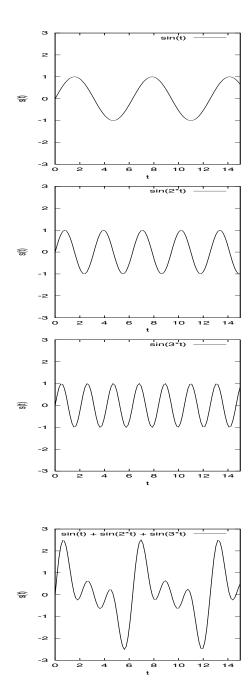

Two: wireless propagation

- \rightarrow above 10 GHz requires line-of-sight (LOS)
- \rightarrow complications due to multi-path propagation
- \rightarrow echos can be bad (and sometimes good)

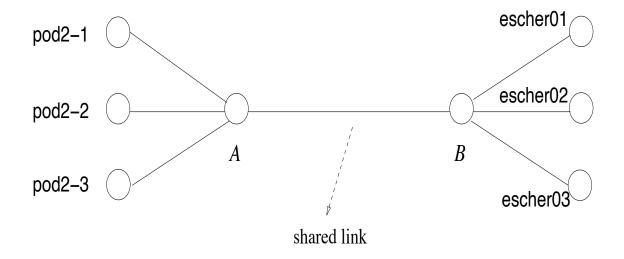
Three: multi-user communication

→ not just point-to-point links connecting two parties

Example: wireless interference


Joe receives bits from AT&T's cell tower, Mira from T-Mobile.

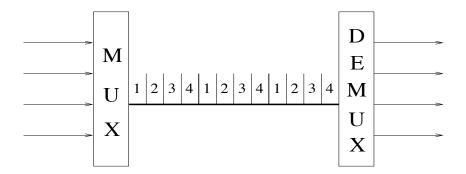
- \rightarrow Joe also hears T-Mobile's signal, Mira hears AT&T's signal
- \rightarrow interference
- \rightarrow What does Joe's smart phone actually hear?


Joe's device hears the sum of the two signals

- \rightarrow property of electromagnetic waves
- \rightarrow i.e., superposition
- \rightarrow fundamental physics: linear
- \rightarrow amenable to analysis and manipulation
- \rightarrow basis for modern computer networks

Superposition of three sine waves:

Example: multiplexing (i.e., intentional sharing of resources)

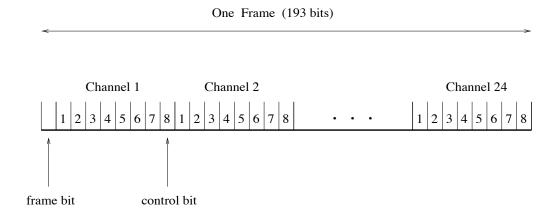

- \rightarrow LWSN B148/HAAS G56 machines: A and B are Ethernet switches
- \rightarrow A and B are routers/switches that forward multiple traffic streams
- \rightarrow structured, orderly access

Splitting time based on AM method of sending bits using sine waves:

 \rightarrow time-division multiplexing (TDM)

Ex.: four bit streams sharing same link

 \rightarrow reserve time slots for each bit stream


- \rightarrow user 1 gets slots 1, 5, 9, etc.
- \rightarrow user 2 gets slots 2, 6, 10, etc.
- \rightarrow router A: acts as multiplexer (MUX) or combiner
- \rightarrow router B: acts as demultiplexer (DEMUX) or splitter

TDM, or TDMA (time-division multiple access) when slots belong to multiple users, is popular in cellular systems and traditional landline telephone systems.

 \rightarrow simple but fundamental sharing technique

Real-world TDMA example from wired world:

- \rightarrow T1 carrier (1.544 Mbps)
- \rightarrow goal: support 24 simultaneous users ("channels")

Specs of T1 carrier:

- 24 channels (i.e., users)
- time slot: 8-bit block (each user sends 8 consecutive bits)
- $24 \times 8 = 192$ bits of payload
- plus 1 control bit: total 193 bits in a frame (unit of packaged data)
- squeeze 8000 frames into 1 second time interval
 - \rightarrow frame duration: 125 μ sec
- total bandwidth (bps): $8000 \times 193 = 1.544$ Mbps
- per channel bandwidth (bps): $8000 \times 8 = 64 \text{ Kbps}$
 - \rightarrow landline quality telephony service

At one time, popular service sold by ISPs (mainly) to companies

- \rightarrow 20+ years back, Purdue leased about 6–7 T1 lines for the entire WL campus
- \rightarrow next level T3 line: 44.736 Mbps

Today: residential subscriber can get 1 Gbps or faster download speed

- \rightarrow uplink: significantly slower
- \rightarrow bandwidth asymmetry
- \rightarrow reflects client/server environment

TDMA: important multi-user link transmission technology

- \rightarrow works well if resource (e.g., frequency) is managed by central authority
- \rightarrow single provider
- \rightarrow otherwise: complications

What we want: parallel lanes where multiple bit streams are transmitted simultaneously

- \rightarrow essence of modern high-speed networks
- \rightarrow key technology: use multiple frequencies
- \rightarrow e.g., 1 GHz and 2 GHz for two parallel lanes

How does using multiple frequencies for multiple lanes work?

- \rightarrow classical method
- \rightarrow improvements: our goal
- \rightarrow modern broadband networks

Roadmap:

- start with CDMA
 - \rightarrow focus on coding: symbol processing
 - \rightarrow conceptual basis for analog methods
- move on to FDMA
 - \rightarrow use analog signals (sinusoid) to send parallel bit streams
 - \rightarrow classical method
 - \rightarrow limitations
- arrive at OFDM (orthogonal frequency division multiplexing)
 - \rightarrow extend FDMA to squeeze in more parallel lanes
 - \rightarrow increase bandwidth (bps)

CDMA motivation: linear algebra approach for sending multiple bit streams

Example: three users Alice, Bob, Mira

- \rightarrow simplest case: cell tower wants to send each user 1 bit
- \rightarrow but not TDMA

Assign each user a 3-D vector: called code

- \rightarrow (1,0,0) for Alice
- \rightarrow (0,1,0) for Bob
- \rightarrow (0,0,1) for Mira

To send bit value 1 to Alice, 0 to Bob, 1 to Mira:

- \rightarrow broadcast vector (1,0,1) to everyone
- \rightarrow trivial: not much gained

Allow negative values:

 \rightarrow send (1,-1,1): 1 means 1, -1 means 0

In general: let positive value means 1, negative value means 0

Example: assign Alice, Bob, Mira code vectors

 \rightarrow Alice: (1,-2,1)

 \rightarrow Bob: (3,5,7)

 \rightarrow Mira: (19,4,-11)

The code vectors are stored in their smart phones.

Cell tower transmits via broadcast: (17,-3,-17)

- \rightarrow ignore how the cell tower transmits (17, -3, -17) via electromagnetic waves
- \rightarrow upon receiving (17, -3, -17), how does Alice know what bit was sent?

Solution: Alice calculates dot product of received vector (17, -3, -17) with her code vector (1, -2, 1).

Definition of dot product: Given two 3-D vectors $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$, their dot (or inner) product is

$$x \circ y = x_1 y_1 + x_2 y_2 + x_3 y_3$$

For Alice:

$$(17, -3, -17) \circ (1, -2, 1) = 17 + 6 - 17 = 6 > 0$$

 \rightarrow positive means bit 1

For Bob:
$$(17, -3, -17) \circ (3, 5, 7) = 51 - 15 - 119 = -83 < 0$$

 \rightarrow negative means bit 0

For Mira:
$$(17, -3, -17) \circ (19, 4, -11) = 323 - 12 + 187 = 498 > 0$$

 \rightarrow positive means bit 1

Why does this work?

- \rightarrow what is special about (1,-2,1), (3,5,7), (19,4,-11)
- \rightarrow where did (17,-3,-17) come from

The three code vectors are mutually orthogonal: $x \circ y = 0$

Cell tower's job: send 1 to Alice, 0 to Bob, 1 to Mira

Cell tower computes (17, -3, 17) to broadcast where

$$(+1) \cdot (1, -2, 1) + (-1) \cdot (3, 5, 7) + (+1) \cdot (19, 4, -11)$$

= $(17, -3, 17)$

When Alice performs dot product of received vector (17,-3,-17) with her code vector (1,-2,1), it is equivalent to

$$\left\{ (+1) \cdot (1, -2, 1) + (-1) \cdot (3, 5, 7) + (+1) \cdot (19, 4, -11) \right\}$$

$$\circ (1, -2, 1)$$

By orthogonality, the second and third terms vanish and what is left is

$$\rightarrow (+1)(1,-2,1) \circ (1,-2,1) = 1+4+1=6>0$$

 \rightarrow taking the dot product with oneself is always positive

For Bob:

$$\to (17, -3, -17) \circ (3, 5, 7) = 51 - 15 - 119 = -83 < 0$$

 \rightarrow negative means bit 0

For Mira:

$$\rightarrow (17, -3, -17) \circ (19, 4, -11) = 323 - 12 + 187 = 498 > 0$$

If we wanted the dot product for Alice to yield +1, Bob -1, Mira, +1, what to do?

Why might we not want the result to be 1, -1, 1, but 6, -83, 498?

CDMA (code division multiple access): using linear algebra, hide the bits to send in the coefficients of the code vectors.

- \rightarrow in TDMA we divide time to transmit multiple bits in time slots
- \rightarrow in CDMA, we "divide" code to transmit multiple bits as coefficients
- \rightarrow coefficients are called spectrum

In CDMA, coding is used to encode multiple bits before transmission using electromagnetic waves occurs.

- \rightarrow separate (analog) stage
- → omit here: will cover FDMA and OFDMA
- \rightarrow driver in 90s-20s: QUALCOMM
- \rightarrow e.g., Verizon, Sprint used CDMA in 3G cellular networks
- \rightarrow retired in '22 and '23

Origin: military context (long history)

→ if code vectors are chosen to be random, additional feature of security (confidentiality)

Generalize:

To communicate n bits belonging to n users

• Set-up: assign n orthogonal code vectors in n-dimensional vector space

$$\rightarrow \mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$$

• Sender: to encode n data bits a_1, a_2, \ldots, a_n (+1 for 1, -1 for 0), compute

$$\to \mathbf{z} = a_1 \mathbf{x}^1 + a_2 \mathbf{x}^2 + \dots + a_n \mathbf{x}^n$$

- \rightarrow **z** is an *n*-dimensional vector that hides *n* bits in its coefficients (spectra)
- \rightarrow convert **z** into analog signal and transmit to all receivers

• Receiver: to decode user i'th bit a_i , receiver computes dot product

$$\rightarrow \mathbf{z} \circ \mathbf{x}^i = a_i(\mathbf{x}^i \circ \mathbf{x}^i) = a_i \times \text{positive constant}$$

 \rightarrow by orthogonality

Next: borrow the conceptual framework from linear algebra for hiding bits in electromagnetic waves

- \rightarrow FDMA and OFDMA
- \rightarrow replace *n*-dimensional vectors with continuous complex sinusoids
- \rightarrow good news: much of the conceptual framework carries over