Back to sending multiple bits using FDM

- \rightarrow using AM to send bits causes frequency spreading
- \rightarrow problematic because may cause interference

Inter-channel interference (ICI):

 \rightarrow distortion introduced by spreading can make decoding bits difficult

Example: two parallel bit streams carried on carrier frequencies 100 MHz and 101 MHz

Good case: ICI does not impact decoding bits

 \rightarrow signal spreading around 100 MHz and 101 MHz does not overlap

Bad case: ICI impacts decoding bits

- \rightarrow superposition of overlapping spectra
- \rightarrow Alice and Bob will have difficulty decoding their respective bit streams

To prevent ICI: sufficiently separate neighboring carrier frequencies

 \rightarrow guardband

 \rightarrow traditional FDM approach

Drawback: limits how many carrier frequencies can be squeezed in a given frequency range

 \rightarrow i.e., spectral efficiency is low

 \rightarrow network bandwidth is a scarce resource

Electromagnetic spectrum (wireless):

 \rightarrow some of its data communication use today

 \rightarrow logarithmic scale

 \rightarrow crowded

 \rightarrow spectral efficiency a premium

Modern approach to FDM: orthogonal FDM \rightarrow use sinusoids that are mutually orthogonal \rightarrow over finite time window τ

Complex sinusoids e^{if_it} and e^{if_jt} are orthogonal $(f_i \neq f_j)$:

$$e^{if_it} \circ e^{if_jt} = \int_{-\infty}^{\infty} e^{if_it} e^{-if_jt} dt = 0$$

Want:

$$\int_{-\tau/2}^{\tau/2} e^{if_i t} e^{-if_j t} dt = 0$$

- \rightarrow orthogonal f_1, f_2, \ldots, f_n
- $\rightarrow \tau$ is similar to baud, called symbol period
- \rightarrow duration of single bit

Transmit multiple bits using n orthogonal sinusoids with frequencies f_1, f_2, \ldots, f_n :

$$s(t) = \sum_{k=1}^{n} a_k e^{if_k t}$$

 \rightarrow hide bits in a_k

- \rightarrow note: a_k is complex number
- \rightarrow AM, PM, combination

To decode bit on carrier f_k :

$$\rightarrow a_k = s(t) \circ e^{if_k t}$$

- \rightarrow perform Fourier transform over time window τ
- \rightarrow orthogonality eliminates ICI issue

OFDM's advantage over FDM:

FDM:

OFDM:

 \rightarrow spectra allowed to overlap

Can pack more carrier frequencies within given a frequency band

 \rightarrow enhanced spectral efficiency

Technique considered since the mid-1960s

- \rightarrow only recently practically feasible: DSP advances
- \rightarrow FFT, inverse fast Fourier transform (IFFT)
- \rightarrow demand for ever increasing bandwidth
- \rightarrow popular in both wireless and wired networks

How to find n mutually orthogonal sinusoids over finite time interval:

 \rightarrow choose harmonics of base frequency

Given available frequency band between f_a and f_b

- \rightarrow bandwidth: $W = f_b f_a$
 - Choose n carrier frequencies:

 \rightarrow carrier frequency spacing W/n

$$\rightarrow f_a + (W/n), f_a + 2(W/n), \ldots, f_a + n(W/n)$$

- Symbol period $\tau = n/W$
 - \rightarrow increasing n results in increased symbol period and decrease in bps
 - \rightarrow increasing W results in decreased symbol period and increase in bps
 - \rightarrow no free lunch

- Available bandwidth range: $f_a = 2.4$ GHz, $f_b = 2.5$ GHz, W = 100 MHz
- Number of carrier frequencies: n = 100
 - \rightarrow carrier spacing 100 MHz / 100 = 1 MHz
 - \rightarrow 2.401 GHz, 2.402 GHz, ..., 2.5 GHz
- Symbol period: $\tau = 100/100$ MHz = 1 μ sec \rightarrow AM with 2 levels: 1 Mbps per user, 100 Mbps total

In the above example, there are 100 orthogonal carrier frequencies. Each carries one bit during time interval of length 1 μ sec.

- \rightarrow not at clock rate 2.4 GHz
- \rightarrow 1 $\mu \rm sec$ symbol period implies 1 MHz baud rate

Note: primary is bandwidth

 $\rightarrow 0.1 \text{ MHz} = 2.5 \text{ GHz} - 2.4 \text{ GHz}$

 \rightarrow not absolute frequency 2.4 GHz

OFDM information processing takes place at 1 $\mu \rm sec$ time granularity

 $\rightarrow 1 \text{ MHz}$

 \rightarrow much slower than 2.4 GHz

Since only allowed to use 2.4-2.5 GHz band, final step involves multiplying 1 MHz bandwidth signal by 2.4 GHz sinusoid.

- \rightarrow basic property: time domain multiplication becomes shift operation in frequency domain
- \rightarrow 1 MHz data carrying signal gets shifted to 2.4-2.5 GHz band

Wireless network example: IEEE 802.11g WLANs

 $\rightarrow 2.4 \text{ GHz band}$

 \rightarrow uses OFDM

 $\rightarrow W = 20$ MHz, n = 64

- \rightarrow carrier spacing 20 MHz / 64 = 312.5 kHz
- \rightarrow symbol time $\tau = 3.2 \ \mu s$

But: OFDM not used to support 64 users

- \rightarrow i.e., not OFDMA
- \rightarrow one user uses all 64 frequencies
- \rightarrow multiple access (MA), i.e., sharing of bandwidth among users solved using higher layer protocol

 $\rightarrow \text{CSMA/CA}$

Similar approach for 802.11a/n in 5 GHz band.

 \rightarrow Wi-Fi 5

IEEE 802.11ax supports OFDMA

 \rightarrow Wi-Fi 6

- \rightarrow fundamentally different from CSMA/CA which is collision based
- \rightarrow same for Wi-Fi 7 (802.11be)
- \rightarrow close to ratification in 2024

- \rightarrow part of ITU G.992.1 standard
- \rightarrow UTP (unshielded twisted pair) copper wire

 $\rightarrow W = 1.104 \text{ MHz}, n = 256$

- \rightarrow carrier spacing 4.3125 kHz
- \rightarrow OFDM, not OFDMA

OFDMA under consideration for optical fiber communication

 \rightarrow extends WDM

Fundamental question: How much throughput can we squeeze out from a network link

- \rightarrow upper bound on capacity: reliable throughput
- \rightarrow information transmission under noise

Impact of noise:

 \longrightarrow encoding/decoding: $a \mapsto w_a \mapsto w \mapsto ?$ $\rightarrow w_a$ gets corrupted, i.e., becomes w \rightarrow if $w = w_b$, incorrectly conclude b as symbol • Detect w is corrupted

 \rightarrow error detection

• Correct w back to w_a

 \rightarrow error correction

Shannon showed that there is a fundamental limit to achieving reliable data transmission.

• the wider the bandwidth (Hz) the higher the reliable throughput

 \rightarrow bandwidth of physical medium (i.e., channel)

• the noisier the channel, the smaller the reliable throughput \rightarrow overhead incurred dealing with corrupted bits

Quantitative captured in a formula.

Channel Coding Theorem (Shannon): Given bandwidth W, signal power P_S , noise power P_N , channel subject to white noise,

$$C = W \log \left(1 + \frac{P_S}{P_N} \right) \text{ bps}$$

 $\rightarrow P_S/P_N$: signal-to-noise ratio (SNR)

 \rightarrow increasing power yields logarithmic gain

- Increase bandwidth W (Hz) to proportionally increase reliable throughput
 - \rightarrow e.g., FDM, OFDM, TDM
- Power control (e.g., handheld wireless devices)
 - \rightarrow trade-off w.r.t. battery power
 - \rightarrow trade-off w.r.t. multi-user interference: doesn't work if everyone increases power
 - \rightarrow signal-to-interference ratio (SIR)

Signal-to-noise ratio (SNR) expressed as $dB = 10 \log_{10}(P_S/P_N)$

Example: assuming a decibel level of 10, what is the channel capacity of a telephone line?

First, W = 3000 Hz, $P_S/P_N = 1000$. Using Channel Coding Theorem,

 $C = 3000 \log 1001 \approx 30$ Kbps.

 \rightarrow compare against 28.8 Kbps modems

 \rightarrow what about 56 Kbps modems?

 \rightarrow inaccurate assumptions

Nyquist's sampling criterion:

- \rightarrow digitize analog signal: time and amplitude
- \rightarrow key issue: digitizing time
- \rightarrow continuous time signal to discrete time samples

Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with bandwidth W (Hz), s(t) can be reconstructed from its samples if

$$\nu > 2W$$

where ν is the sampling rate.

 $\rightarrow \nu$: samples per second

- \rightarrow sensitivity: 20 Hz–20 KHz range (roughly 20 KHz)
- \rightarrow voice: 300 Hz–3.3 KHz (roughly 4 KHz)
- \rightarrow 8000 samples per second
- T1 TDMA line: 1.544 Mbps
- \rightarrow frame size 193 (24 users, 8 bits-per-user, 1 preamble bit)
- $\rightarrow 8000$ samples per second
- $\rightarrow 193 \times 8000 = 1.544$ Mbps

CD quality audio: 44100 samples per second

 \rightarrow also denoted Hz (44.1 KHz)