LINK LAYER: MULTI-USER COMMUNICATION

Two approaches for bandwidth sharing

- contention-free
 - \rightarrow also called reservation-based
 - \rightarrow TDMA, FDMA, OFDMA, TDMA+FDMA, CDMA
- contention-based

 \rightarrow CSMA, CSMA/CD, CSMA/CA, and variants

In link layer:

 \rightarrow called medium access control (MAC)

In network layer:

 \rightarrow called scheduling (packet, flow, connection)

Contention-free MAC:

- \rightarrow orderly pre-determined sharing
- \rightarrow prior reservation of network resources
- \rightarrow typically centralized

Examples:

- TDMA: who gets what time slots
- FDMA, WDM, OFDMA: who gets what carrier frequency
- FDMA+TDMA: what gets what time slots in what carrier frequency
- CDMA: who gets what code

Contention-based MAC:

- \rightarrow single carrier shared by multiple devices
- \rightarrow less orderly than contention-free MAC
- \rightarrow variable performance since resources are not reserved
- \rightarrow typically decentralized

Main building block: multiple access (MA)

 \rightarrow when you have data to send, send

Problem of pure MA: if two or more devices sharing carrier frequency transmit at the same time

- \rightarrow called collision
- \rightarrow distortion of signal
- \rightarrow can lead to failure decoding bits

Additional capabilities of contention-based MAC:

When NIC has data to send

- \rightarrow first check if there is ongoing transmission: carrier sense (CS)
- \rightarrow send only if link is idle
- \rightarrow hence CSMA
- After MA (sending data) there may be collision
- \rightarrow if sender can detect collision has occured: collision detection (CD)
- \rightarrow hence CSMA/CD
- \rightarrow if sender cannot detect collision: may engage in collision avoidance (CA)
- \rightarrow hence CSMA/CA

Steps of contention-based MAC:

- 1. CS: optional
- 2. CA: optional
- 3. MA: always (by definition)
- 4. CD: optional (may not be technically viable)
- 5. receiver sends ACK frame: optional

 \rightarrow positive ACK: received packet

 \rightarrow negative ACK: did not receive packet

- 6. resend data frame: optional
 - \rightarrow typically finite retries
 - \rightarrow unreliable
 - \rightarrow inject pause before retry: called backoff

Collision need not always result in decoding failure

- \rightarrow if two frames collide and one frames has much stronger signal strength than the other: stronger packet may be successfully decoded
- \rightarrow "survival of the strongest"
- \rightarrow called capture effect

Collision need not result in decoding failure: by design

- \rightarrow non-destructive arbitration (NDA)
- \rightarrow CSMA/CD with NDA
- \rightarrow used in CAN (control area network)
- \rightarrow dominant standard of automotive/vehicular networks
- \rightarrow bus arbitration

 \rightarrow just send if there is something to send

Used in pioneering real system: ALOHA (early 1970s)

- \rightarrow wireless packet network connecting Univ. of Hawaii island campuses
- \rightarrow MA: called pure ALOHA protocol
- \rightarrow deployed system to solve real-world problem
- \rightarrow almost 50 years before boom of wireless data networks
- \rightarrow precedes Internet as operational packet (radio) network
- \rightarrow visionary work by Norm Abramson
- \rightarrow precursor to Bob Metcalfe's Ethernet
- \rightarrow underlies WLAN and other wireless networks today

Why was MA suited for connecting Univ. of Hawaii island campuses?

Why not use carrier sense (CS) in ALOHA?

What about collision detection (CD)?

- CS: not suited for nodes separated by long distances
- \rightarrow high latency before signal reaches other senders
- \rightarrow collision likelihood high
- CD: not suited for long distances
- \rightarrow need to wait a long while before being sure that no collision occurred
- \rightarrow time is bandwidth
- Pros of contention-based MAC
 - When load is low (not many devices share), faster response time
 - \rightarrow small coordination overhead: CSMA
 - \rightarrow e.g., TDMA, FDMA, OFDMA need to request and reserve slots
 - \rightarrow management/signaling frames incur delay and consume bandwidth

• Decentralized

 \rightarrow no central arbiter

 \rightarrow minimal coordination overhead

 \rightarrow but for security concerns (e.g., Purdue's PAL)

Cons of contention-based MAC:

• When load is high (many devices share), degraded throughput

 \rightarrow retransmission due to collision

 \rightarrow wastes bandwidth

- Lack of QoS (quality of service) assurance
 - \rightarrow "you get what you get"
 - \rightarrow called best-effort service

- Lack of QoS assurance (cont.)
 - → problematic for real-time traffic (e.g., VoIP, video conferencing) and apps with timeliness constraints (e.g., streaming, games)
 - \rightarrow Original WLAN standard had provisions to support telephony: not used in practice
 - \rightarrow Wi-Fi 6 and 7 support OFDMA based resource reservation

The opposite trade-off for contention-free protocols.

When to use what?

- \rightarrow if load is high, contention-free protocols achieve better performance
- \rightarrow vice versa if load is low