CS 556 Park

TCP congestion control:
— general data transport

— focus: speedy transport of large files

[ssue:

e too fast: significant losses lead to degraded perfor-
mance

— e.g., TCP congestion collapse
e t00 slow: underutilize bandwidth

— especially pronounced in today’s high-speed net-
works

CS 556 Park

Example: aggravated in data center networks

— called TCP incast

Data center network topology evolved to accommodate
horizontal (or east-west traffic)

e Clos/leaf-spine connectivity
— facilitates east-west traffic flow of data center apps

e application traffic can generate many-to-one simulta-
neous data transfer

— hot spot at spine switches

— significant packet losses and degraded throughput

After aggressive backoff to prevent TCP throughput col-
lapse, want to recover faster than linear increase to utilize
high speed links.

— important application domain of congestion control

CS 556 Park

Interface between TCP sliding window and congestion

control:

EffectiveWindow = MaxWindow —
(LastByteSent — LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

— how to adjust CongestionWindow to increase through-

put
— prevent congestion collapse

— based on method B

CS 556 Park

TCP congestion control components:

(i) Congestion avoidance

— linear increase/exponential decrease

— additive increase/exponential decrease (AIMD)
As in method B, increase CongestionWindow linearly,
but decrease exponentially
Upon receiving ACK:

CongestionWindow < CongestionWindow + |

Upon timeout:

CongestionWindow < CongestionWindow /2

But is it correct. . .

CS 556 Park

“Linear increase” time diagram:

Sender Receiver
1 »
*241:11::::::::::::::::

RTT -

Il

|
W
B

|
I
%
|

:
|

16

/

time time

— results in exponential increase

CS 556 Park

What we want:

Sender Receiver

1 »

RTT -

time time

— increase by 1 every window

CS 556 Park

Thus, linear increase update:

CongestionWindow <— CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoft,

SlowStartThreshold < CongestionWindow /2

CS 556 Park

(ii) Slow Start
Reset CongestionWindow to 1

Perform exponential increase
CongestionWindow < CongestionWindow + |

e Until timeout at start of connection
— rapidly probe for available bandwidth

e Until CongestionWindow hits SlowStartThreshold
following Congestion Avoidance

— rapidly climb to safe level

— “slow” 1Is a misnomer

— exponential increase is super-fast

CS 556 Park

Basic dynamics:
— after connection set-up

—— before connection tear-down

connection start timeout SlowStartThreshold timeout

Slow Start — Slow Start — Congestion Avoidance — Slow Start

\
repeat

— many TCP transters are small

— small TCP flows don’t escape Slow Start

CS 536 Park
CongestionWindow evolution:
— relevant for larger flows
CongestionWindow
timeout
timeout
”””””””””” timeout
ssthresh
ssthresh
ssthresh

/

/

Events (ACK or timeout)

CS 556 Park

(iii) Exponential timer backoff

TimeOut < 2 - TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:
e Transmit next expected segment
— segment indicated by ACK value

e Perform exponential backoff and commence Slow Start

— three duplicate ACKs: likely segment is lost

—— react before timeout occurs

TCP Tahoe: features (i)-(iv)

CS 556 Park

(v) Fast Recovery

Upon Fast Retransmit: skip Slow Start, continue sending
new data before switching to Congestion Avoidance

— assumption: dup ACKs indicate spurious loss
— can afford to be more aggressive

— avoid stalling

Set CongestionWindow to SlowStartThreshold + 3
e account for 3 dup ACKs
— allows transmission of new data

e keep incrementing CongestionWindow for additional

dup ACKs

e upon receiving new ACK transition to Congestion
Avoidance

—— TCP Reno

CS 556 Park

TCP New Reno:
e stay in Fast Recovery longer

— handle multiple spurious losses within packet train

— delay transition to Congestion Avoidance

o sclective ACK (SACK)

— receiver informs sender of contigous blocks of data
received

— 1.e., sender able to identify holes

... drawback: more complex

CS 556 Park

Recent variants:

— more aggressive than plain linear increase

— targeted at modern high-speed networks

TCP BIC:
e Upon loss set:

— Wmax congestion window size at time of loss

— W.

min

backoft

congestion window size after multiplicative

e Perform binary search between Wi, and Wmax to
rapidly identify sustainable high throughput window
s1ze

— updated congestion window: (Wi, + Wmax)/2

— upper bound window increase

CS 556 Park

TCP Cubic:
— based on BIC

— window Increase follows cubic function

e from Wiip to Wmax

— concave increase: similar to binary search
e above Wmax

— convex increase: rapid probing similar to slow start
e congestion window update not determined by RT'T

— use time elapsed since last window reduction

— akin to open-loop window increase

... default TCP congestion control in Linux, MacOS,
Windows.

CS 556 Park

Compound TCP: delay-based

e cstimate queueing delay from RTT

— closer to method D

— other variants of delay based TCP (e.g., Vegas)
e hybrid: uses sum of two windows

— delay based window that increases rapidly
— loss based window following linear increase

— susceptible to congestion collapse

Used in Windows 10 until transition to TCP Cubic.

Data Center TCP (DCTCP):

— invoke router/switch assistance: AQM
— ECN (explicit congestion notification)
— established at TCP connection set-up
— [Pv4: 2-bit ECN in TOS field

CS 556 Park

Congestion control: selfishness and fairness
e different versions of TCP co-exist on Internet

e aggressiveness that increases throughput for one con-
nection may come at the expense of another

— referred to as TCP-friendliness

Example:

— 5 regular (cooperative) TCP flows

— share 11 Mbps WLAN bottleneck link

CS 556 Park

Throughput share of 5 homogenous TCP flows:

Flow 1-5: cooperative

2 T T T

15 F 1
3
2
P
<=
o0
=
g
=
= ;

05 r/

O 1 1 1
0 50 100 150 200
Time (sec)
Flow 1-5: cooperative
25

2 . 4
3
2 15°¢ — — 1
]
2
<=
o
= 1+ |
g
=
=~

05 r R
O L L L L L

CS 556 Park

4 regular (cooperative) TCP flows and 1 noncooperative
TCP flow:

— starts behaving selfishly at time 100s

Flow 1-4: cooperative Flow 5: noncooperative

2 T
Flow 5 ——

L5t
3
2
E
=
D
=
2
= F
= K

05 '

0 1 1 1
0 50 100 150 200
Time (sec)
Flow 1-4: cooperative Flow 5: noncooperative
25

2 .
3
= 15}
5
2
=)
= L
g 1
=
=

05 r
O L L L L
1 2 3 4

Flow ID

CS 556 Park

Potential for unfairness

— unintentional: T'CP friendliness

— intentional: deployment hurdle for noncooperative ac-
tor

In general: subject of noncooperative game theory

— e.g., mechanism design
— hurdles to exploiting selfishness

— disincentivize

