
CS 536 Park

TCP congestion control:

→ general data transport

→ focus: speedy transport of large files

Issue:

• too fast: significant losses lead to degraded perfor-
mance

→ e.g., TCP congestion collapse

• too slow: underutilize bandwidth

→ especially pronounced in today’s high-speed net-
works

CS 536 Park

Example: aggravated in data center networks

→ called TCP incast

Data center network topology evolved to accommodate
horizontal (or east-west traffic)

• Clos/leaf-spine connectivity

→ facilitates east-west traffic flow of data center apps

• application traffic can generate many-to-one simulta-
neous data transfer

→ hot spot at spine switches

→ significant packet losses and degraded throughput

After aggressive backoff to prevent TCP throughput col-
lapse, want to recover faster than linear increase to utilize

high speed links.

→ important application domain of congestion control

CS 536 Park

Interface between TCP sliding window and congestion

control:

EffectiveWindow = MaxWindow−

(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

→ how to adjust CongestionWindow to increase through-
put

→ prevent congestion collapse

→ based on method B

CS 536 Park

TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in method B, increase CongestionWindow linearly,
but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .

CS 536 Park

“Linear increase” time diagram:

Sender Receiver

time

RTT

time

2

4

1

8

16

−→ results in exponential increase

CS 536 Park

What we want:

Sender Receiver

time

RTT

time

2

1

3

4

5

−→ increase by 1 every window

CS 536 Park

Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2

CS 536 Park

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast

CS 536 Park

Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start

Slow Start

timeout

Congestion Avoidance Slow Start

timeout

repeat

SlowStartThreshold

−→ many TCP transfers are small

−→ small TCP flows don’t escape Slow Start

CS 536 Park

CongestionWindow evolution:

−→ relevant for larger flows

CongestionWindow

Events (ACK or timeout)

timeout

timeout
timeout

ssthresh

ssthresh
ssthresh

CS 536 Park

(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)

CS 536 Park

(v) Fast Recovery

Upon Fast Retransmit: skip Slow Start, continue sending
new data before switching to Congestion Avoidance

→ assumption: dup ACKs indicate spurious loss

→ can afford to be more aggressive

→ avoid stalling

Set CongestionWindow to SlowStartThreshold + 3

• account for 3 dup ACKs

→ allows transmission of new data

• keep incrementing CongestionWindow for additional
dup ACKs

• upon receiving new ACK transition to Congestion

Avoidance

−→ TCP Reno

CS 536 Park

TCP New Reno:

• stay in Fast Recovery longer

→ handle multiple spurious losses within packet train

→ delay transition to Congestion Avoidance

• selective ACK (SACK)

→ receiver informs sender of contigous blocks of data
received

→ i.e., sender able to identify holes

. . . drawback: more complex

CS 536 Park

Recent variants:

→ more aggressive than plain linear increase

→ targeted at modern high-speed networks

TCP BIC:

• Upon loss set:

→ Wmax congestion window size at time of loss

→ Wmin congestion window size after multiplicative

backoff

• Perform binary search between Wmin and Wmax to
rapidly identify sustainable high throughput window
size

→ updated congestion window: (Wmin +Wmax)/2

→ upper bound window increase

CS 536 Park

TCP Cubic:

→ based on BIC

→ window increase follows cubic function

• from Wmin to Wmax

→ concave increase: similar to binary search

• above Wmax

→ convex increase: rapid probing similar to slow start

• congestion window update not determined by RTT

→ use time elapsed since last window reduction

→ akin to open-loop window increase

. . . default TCP congestion control in Linux, MacOS,
Windows.

CS 536 Park

Compound TCP: delay-based

• estimate queueing delay from RTT

→ closer to method D

→ other variants of delay based TCP (e.g., Vegas)

• hybrid: uses sum of two windows

→ delay based window that increases rapidly

→ loss based window following linear increase

→ susceptible to congestion collapse

Used in Windows 10 until transition to TCP Cubic.

Data Center TCP (DCTCP):

→ invoke router/switch assistance: AQM

→ ECN (explicit congestion notification)

→ established at TCP connection set-up

→ IPv4: 2-bit ECN in TOS field

CS 536 Park

Congestion control: selfishness and fairness

• different versions of TCP co-exist on Internet

• aggressiveness that increases throughput for one con-
nection may come at the expense of another

→ referred to as TCP-friendliness

Example:

→ 5 regular (cooperative) TCP flows

→ share 11 Mbps WLAN bottleneck link

CS 536 Park

Throughput share of 5 homogenous TCP flows:

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Th
ro

ug
hp

ut
 (M

b/
s)

Time (sec)

Flow 1-5: cooperative

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Flow ID

Flow 1-5: cooperative

CS 536 Park

4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

→ starts behaving selfishly at time 100s

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Th
ro

ug
hp

ut
 (M

b/
s)

Time (sec)

Flow 1-4: cooperative Flow 5: noncooperative

Flow 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Flow ID

Flow 1-4: cooperative Flow 5: noncooperative

CS 536 Park

Potential for unfairness

→ unintentional: TCP friendliness

→ intentional: deployment hurdle for noncooperative ac-
tor

In general: subject of noncooperative game theory

→ e.g., mechanism design

→ hurdles to exploiting selfishness

→ disincentivize

