
CS 536 Park

TCP congestion control:

Recall:

EffectiveWindow = MaxWindow−

(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in
turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD

−→ method B

CS 536 Park

TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,
but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .

CS 536 Park

“Linear increase” time diagram:

Sender Receiver

time

RTT

time

2

4

1

8

16

−→ results in exponential increase

CS 536 Park

What we want:

Sender Receiver

time

RTT

time

2

1

3

4

5

−→ increase by 1 every window

CS 536 Park

Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2

CS 536 Park

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast

CS 536 Park

Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start

Slow Start

timeout

Congestion Avoidance Slow Start

timeout

repeat

SlowStartThreshold

−→ many TCP transfers are small

−→ small TCP flows don’t escape Slow Start

CS 536 Park

CongestionWindow evolution:

−→ relevant for larger flows

CongestionWindow

Events (ACK or timeout)

timeout

timeout
timeout

ssthresh

ssthresh
ssthresh

CS 536 Park

(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)

CS 536 Park

(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-
ance

CS 536 Park

Additional changes and recent TCP variants.

Window scaling:

• 16-bit window size field limits receiver buffer size to

64 KB.

• Increase window size by scaling factor.

• During SYN handshake, exchange scaling factor using
option field.

• If scaling factor is c, multiply window size by 216+c

→ shift operation

→ c limited to 14

CS 536 Park

BIC-TCP, TCP CUBIC: loss-based

• Instead of linear increase in Congestion Avoidance,
use binary search (BIC)

→ concave shape: fast then slow when nearing win-

dow size of congestion event (Wmax)

→ convex shape: afterWmax switch to probing mode

→ TCP CUBIC uses cubic function directly

→ Linux

TCP Vegas, Compound TCP: delay-based, hybrid

• Estimate queueing delay from RTT

→ use minimum as reference point

• If RTT increases assume queueing at bottleneck link(s)

→ slow down linearly

→ closer to method D

→ susceptible to congestion collapse

CS 536 Park

Case for exponential backoff

• For multimedia streaming (e.g., pseudo real-time) with
limited prefetch, AIMD (Method B) not suited

→ can use Method D, variants

→ under long prefetch, can use reliable transport (e.g.,
TCP)

• For unimodal case—throughput decreases when sys-

tem load is excessive—instability concern

→ asymmetry in control law to curb instability

→ worst-case: congestion collapse

CS 536 Park

Congestion control and selfishness:

−→ to be or not to be selfish . . .

−→ John von Neumann, John Nash, . . .

Ex.: “tragedy of commons,” Garrett Hardin, ’68

Offered Load

Throughput

Congestion

• if everyone acts selfishly, no one wins

→ in fact, everyone loses

• can this be prevented?

CS 536 Park

Ex.: Prisoner’s Dilemma game

−→ formalized by Tucker in 1950

−→ “cold war”

• both cooperate (i.e., stay mum): 1 year each

• both selfish (i.e., rat on the other): 5 years each

• one cooperative/one selfish: 9 vs. 0 years

C

N

C N

A
li

c
e

Bob

1, 1 9, 0

0, 9 5, 5

−→ payoff matrix

−→ what would “rational” prisoners do?

CS 536 Park

When cast as congestion control game:

C

N

C N
A

li
c
e

Bob

5, 5 0, 9

9, 0 1, 1

Alice and Bob share network bandwidth

→ (a, b): throughput (Mbps) achieved by Alice/Bob

→ large is desirable

Upon congestion: back off or escalate?

→ equivalent to Prisoner’s dilemma

CS 536 Park

Rational: in the sense of seeking selfish gain

→ both choose strategy “N”

→ called Nash equilibrium

→ steady-state or stable fixed-point

Reason:

→ whatever choice the other player makes, “N” yields
better payoff over “C”

→ i.e., strategy “N” dominates strategy “C”

In some systems, selfish behavior results in system opti-
mal outcome

→ theoretical foundation of Adam Smith’s “invisible hand”

→ in general, not the case

→ cooperation is better but can it be enforced?

CS 536 Park

Impact in networks:

→ 5 regular (cooperative) TCP flows

→ share 11 Mbps WLAN bottleneck link

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Th
ro

ug
hp

ut
 (M

b/
s)

Time (sec)

Flow 1-5: cooperative

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Flow ID

Flow 1-5: cooperative

CS 536 Park

4 regular (cooperative) TCP flows and 1 noncooperative

TCP flow:

→ starts behaving selfishly at time 100s

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Th
ro

ug
hp

ut
 (M

b/
s)

Time (sec)

Flow 1-4: cooperative Flow 5: noncooperative

Flow 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Th
ro

ug
hp

ut
 (M

b/
s)

Flow ID

Flow 1-4: cooperative Flow 5: noncooperative

CS 536 Park

Potential danger for:

→ unfairness

→ overall system performance

Is it being exploited in today’s Internet?

→ no one knows

→ technical implementation issues

→ e.g., interoperability with legacy protocols

→ e.g., shooting oneself in the foot

