CS 536 Park

CONGESTION CONTROL

Phenomenon: when too much traffic enters into system,
performance degrades

— excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does
not occur

—— not too fast, not too slow
— congestion control

—— first question: what is congestion?

CS 536 Park

Viewpoint: 3 components

— (1) traffic coming in, (2) in transit, (3) going out

AT
< Network w}

—)

traffic in—flight

traffic influx traffic outflux

\\ 1 //
/1 AN

At time instance t:
e traffic influx: A(¢) “offered load” (bps)
e traffic outflux: ~(¢) “throughput” (bps)
e traffic in-flight: Q(¢) “load” (volume, i.e., no. of packets)

CS 536 Park

Examples:

Highway system:
e traffic influx: no. of cars entering highway per second
e traffic outflux: no. of cars exiting highway per second

e traffic in-flight: no. of cars traveling on highway

—— at time instance t

California Dept. of Transportation (Caltrans)

CS 536 Park

Water faucet and sink:
e traffic influx: water influx per second
e traffic outflux: water outflux per second

e traffic in-flight: water level in sink

— not good if sink overflows

T

faucet.com

Many examples: heating/cooling system with thermo-
stat ...

CS 536 Park

What is the meaning of congestion?

— when sending too fast, throughput starts to go down

In the water faucet/sink example: is there congestion?

What about highway system?

CS 536 Park

Example: 802.11b WLAN:

e Throughput

5.5 T :
node 2 —=—
node 5 —=—
node 10 —e—
node 20 —+——
node 30 —x— _
5 | node 50 —e— 66606 o o o o o |
node 100 —&— ;
»
Ko}
=
3 45} 1
=
(=]
=
o
=
=
1S
b]
2 4 .
%)
Q
<
=
3.5 |- 88— 88 85888885 a |
3

1 1 1 1 1 1 1
3.5 4 4.5 5 5.5 6 6.5
Offered Load (Mb/s)

— unimodal or bell-shaped

— what is load Q(t) in wireless LAN?

CS 536 Park

What we can control:
— traffic influx rate \(t)

— no power over anything else

Congestion control: how to regulate influx rate A(t)—
not too fast, not too slow—so that throughput ~(¢) is
maximized

— many applications
— T'CP congestion control

— multimedia video/audio streaming

CS 536 Park

Pseudo Real-Time Multimedia Streaming:

Examples: streaming client /server apps

— real-time vs. pseudo-real-time

“Pseudo” because of prefetching trick
— application is given headstart before playback

— fill & prevent client buffer from becoming empty

CS 536 Park

Main steps:
e prefetch X seconds worth of audio/video data
— initial playback delay

e keep fetching audio/video data such that X seconds
worth of future data resides in receiver’s buffer

— protects against, and hides, spurious congestion
— don’t keep more than X

— potential for wasting resources: bandwidth, mem-
ory, CPU

If streaming is done well, user experiences continuous
playback without quality disruptions

CS 536 Park

Pseudo real-time application architecture:

Sender Receiver

)

A (t) Buffer Y

o Q1)

e (Q(t): current buffer level

e ()*: desired bufter level
e ~v: throughput—fixed playback rate

— e.g., 24 frames-per-second (fps) for movies

Goal: keep Q(t) ~ Q* by adjusting \(t)
— don’t buffer too much: resource wastage

— don’t buffer too little: cannot hide congestion

CS 536 Park

How does load Q(t) vary?

— obeys simple rule

Compare two time instances t and ¢ + 1.

At time t + 1:

Qt+1) = Q(t) + Alt) — ()

e (Q(t): what was there to begin with
e \(t): what newly arrived
e v(t): what newly exited
e \(t) — (t): net influx (positive or negative)
e note: (Q(t) cannot be negative by its meaning
— no. of packets
QU1 +1) = max{0, Q1) + A1) — 7(1)}

e missing item?

CS 536 Park

Other applications.

Ex. 1: Router congestion control
— active queue management (AQM)
e receiver is a router/switch
e () is desired buffer occupancy/delay at router
— too much buffering: bufferbloat (Jim Getty)
e router throttles sender(s) to maintain Q*

— router sends control packets to senders

— instruction: slow down, go faster, stay put

CS 536 Park

Ex. 2: Desktop videoconferencing
— e.g., AOL, MSN, Skype, Yahoo
— video quality may not be good: why?

— common misconception: sole culprit is network

user space

transcoding/encoding/
transmission

|

receiver video quality:
not good (why?)

kernel space

DMA buffer

DMA
video camera controller
’ m--1l .
\ USB/FireWire interface

Sender PC

CS 536 Park

What is the goal:
— achieve Q(t) = Q*

— or close to it: |Q(t) — QF| < ¢

Basic idea:
o if Q(t) = Q* do nothing
o if Q(t) < QQF increase A(t)
— too little in the buffer
o if Q(t) > Q" decrease \(t)

— too much in the buffer

Rule of thumb: called control law

Since state of receiver buffer must be conveyed to sender
who adjusts A(¢):

—— called feedback control

— also closed-loop control

CS 536 Park

Key question in feedback congestion control:

— how much to increase/decrease A(t)

Desired state of the system:
Q(t) = Q" and A(t) = v

— why is A(f) = 7 needed?

— system is in equilibrium or steady-state

Starting state:
— empty buffer and nothing is being sent

—— think of iTunes, Netflix, Spotity, etc.

e, Q(t)=0and A(t) =0

CS 536 Park

Time evolution (or dynamics): track Q(t) and A(¢)

o(1)
Q*, ,,
1 1 1 1 1 1 1 1 1 1 1 1 1 t
1 2 3 4 5 6 7 8 9 1011 12
A(1)
’Y A N S e———TTTT o ___
t

1 2 3 4 5 6 7 8 9 1011 12

