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CONGESTION CONTROL

Phenomenon: when too much traffic enters into system,
performance degrades

— excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does
not occur

—— not too fast, not too slow
— congestion control

—— first question: what is congestion?
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Viewpoint: 3 components

— (1) traffic coming in, (2) in transit, (3) going out
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At time instance t:
e traffic influx: A(¢) “offered load” (bps)
e traffic outflux: ~(¢) “throughput” (bps)
e traffic in-flight: Q(¢) “load” (volume, i.e., no. of packets)
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Examples:

Highway system:
e traffic influx: no. of cars entering highway per second
e traffic outflux: no. of cars exiting highway per second

e traffic in-flight: no. of cars traveling on highway

—— at time instance t

California Dept. of Transportation (Caltrans)
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Water faucet and sink:
e traffic influx: water influx per second
e traffic outflux: water outflux per second

e traffic in-flight: water level in sink

— not good if sink overflows

T

faucet.com

Many examples: heating/cooling system with thermo-
stat ...
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What is the meaning of congestion?

— when sending too fast, throughput starts to go down

In the water faucet/sink example: is there congestion?

What about highway system?
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Example: 802.11b WLAN:

e Throughput
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— unimodal or bell-shaped

— what is load Q(t) in wireless LAN?
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What we can control:
— traffic influx rate \(t)

— no power over anything else

Congestion control: how to regulate influx rate A(t)—
not too fast, not too slow—so that throughput ~(¢) is
maximized

— many applications
— T'CP congestion control

— multimedia video/audio streaming
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Pseudo Real-Time Multimedia Streaming:

Examples: streaming client /server apps

— real-time vs. pseudo-real-time

“Pseudo” because of prefetching trick
— application is given headstart before playback

— fill & prevent client buffer from becoming empty
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Main steps:
e prefetch X seconds worth of audio/video data
— initial playback delay

e keep fetching audio/video data such that X seconds
worth of future data resides in receiver’s buffer

— protects against, and hides, spurious congestion
— don’t keep more than X

— potential for wasting resources: bandwidth, mem-
ory, CPU

If streaming is done well, user experiences continuous
playback without quality disruptions
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Pseudo real-time application architecture:

Sender Receiver

)

A (t) Buffer Y

o Q1)

e (Q(t): current buffer level

e ()*: desired bufter level
e ~v: throughput—fixed playback rate

— e.g., 24 frames-per-second (fps) for movies

Goal: keep Q(t) ~ Q* by adjusting \(t)
— don’t buffer too much: resource wastage

— don’t buffer too little: cannot hide congestion



CS 536 Park

How does load Q(t) vary?

— obeys simple rule

Compare two time instances t and ¢ + 1.

At time t + 1:

Qt+1) = Q(t) + Alt) — ()

e (Q(t): what was there to begin with
e \(t): what newly arrived
e v(t): what newly exited
e \(t) — (t): net influx (positive or negative)
e note: (Q(t) cannot be negative by its meaning
— no. of packets
QU1 +1) = max{0, Q1) + A1) — 7(1)}

e missing item?
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Other applications.

Ex. 1: Router congestion control
— active queue management (AQM)
e receiver is a router/switch
e () is desired buffer occupancy/delay at router
— too much buffering: bufferbloat (Jim Getty)
e router throttles sender(s) to maintain Q*

— router sends control packets to senders

— instruction: slow down, go faster, stay put
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Ex. 2: Desktop videoconferencing
— e.g., AOL, MSN, Skype, Yahoo
— video quality may not be good: why?

— common misconception: sole culprit is network

user space

transcoding/encoding/
transmission

|

receiver video quality:
not good (why?)

kernel space

DMA buffer

DMA
video camera controller
’ m--1l .
\ USB/FireWire interface

Sender PC
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What is the goal:
— achieve Q(t) = Q*

— or close to it: |Q(t) — QF| < ¢

Basic idea:
o if Q(t) = Q* do nothing
o if Q(t) < QQF increase A(t)
— too little in the buffer
o if Q(t) > Q" decrease \(t)

— too much in the buffer

Rule of thumb: called control law

Since state of receiver buffer must be conveyed to sender
who adjusts A(¢):

——  called feedback control

— also closed-loop control
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Key question in feedback congestion control:

— how much to increase/decrease A(t)

Desired state of the system:
Q(t) = Q" and A(t) = v

— why is A(f) = 7 needed?

— system is in equilibrium or steady-state

Starting state:
— empty buffer and nothing is being sent

—— think of iTunes, Netflix, Spotity, etc.

e, Q(t)=0and A(t) =0
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Time evolution (or dynamics): track Q(t) and A(¢)
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