
CS 536 Park

Congestion Control

Phenomenon: when too much traffic enters into system,

performance degrades

−→ excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does

not occur

−→ not too fast, not too slow

−→ congestion control

−→ first question: what is congestion?

CS 536 Park

Viewpoint: 3 components

→ (1) traffic coming in, (2) in transit, (3) going out

traffic in−flight

traffic influx traffic outfluxNetwork

At time instance t:

• traffic influx: λ(t) “offered load” (bps)

• traffic outflux: γ(t) “throughput” (bps)

• traffic in-flight: Q(t) “load” (volume, i.e., no. of packets)

CS 536 Park

Examples:

Highway system:

• traffic influx: no. of cars entering highway per second

• traffic outflux: no. of cars exiting highway per second

• traffic in-flight: no. of cars traveling on highway

−→ at time instance t

California Dept. of Transportation (Caltrans)

CS 536 Park

Water faucet and sink:

• traffic influx: water influx per second

• traffic outflux: water outflux per second

• traffic in-flight: water level in sink

→ not good if sink overflows

faucet.com

Many examples: heating/cooling system with thermo-

stat . . .

CS 536 Park

What is the meaning of congestion?

→ when sending too fast, throughput starts to go down

In the water faucet/sink example: is there congestion?

What about highway system?

CS 536 Park

Example: 802.11b WLAN:

• Throughput

 3

 3.5

 4

 4.5

 5

 5.5

 3.5 4 4.5 5 5.5 6 6.5

M
A

C
 S

ys
te

m
 T

ho
ug

hp
ut

 (
M

b/
s)

Offered Load (Mb/s)

node 2
node 5

node 10
node 20
node 30
node 50

node 100

−→ unimodal or bell-shaped

−→ what is load Q(t) in wireless LAN?

CS 536 Park

What we can control:

→ traffic influx rate λ(t)

→ no power over anything else

Congestion control: how to regulate influx rate λ(t)—

not too fast, not too slow—so that throughput γ(t) is

maximized

→ many applications

→ TCP congestion control

→ multimedia video/audio streaming

CS 536 Park

Pseudo Real-Time Multimedia Streaming:

Examples: streaming client/server apps

→ real-time vs. pseudo-real-time

“Pseudo” because of prefetching trick

→ application is given headstart before playback

→ fill & prevent client buffer from becoming empty

CS 536 Park

Main steps:

• prefetch X seconds worth of audio/video data

→ initial playback delay

• keep fetching audio/video data such that X seconds

worth of future data resides in receiver’s buffer

→ protects against, and hides, spurious congestion

→ don’t keep more than X

→ potential for wasting resources: bandwidth, mem-

ory, CPU

If streaming is done well, user experiences continuous

playback without quality disruptions

CS 536 Park

Pseudo real-time application architecture:

λ (t) γ

Sender Receiver

Buffer

Q Q(t)*

• Q(t): current buffer level

• Q∗: desired buffer level

• γ: throughput—fixed playback rate

→ e.g., 24 frames-per-second (fps) for movies

Goal: keep Q(t) ≈ Q∗ by adjusting λ(t)

−→ don’t buffer too much: resource wastage

−→ don’t buffer too little: cannot hide congestion

CS 536 Park

How does load Q(t) vary?

→ obeys simple rule

Compare two time instances t and t + 1.

At time t + 1:

Q(t + 1) = Q(t) + λ(t)− γ(t)

• Q(t): what was there to begin with

• λ(t): what newly arrived

• γ(t): what newly exited

• λ(t)− γ(t): net influx (positive or negative)

• note: Q(t) cannot be negative by its meaning

→ no. of packets

→ Q(t + 1) = max{0, Q(t) + λ(t)− γ(t)}

• missing item?

CS 536 Park

Other applications.

Ex. 1: Router congestion control

−→ active queue management (AQM)

• receiver is a router/switch

• Q∗ is desired buffer occupancy/delay at router

→ too much buffering: bufferbloat (Jim Getty)

• router throttles sender(s) to maintain Q∗

→ router sends control packets to senders

→ instruction: slow down, go faster, stay put

CS 536 Park

Ex. 2: Desktop videoconferencing

→ e.g., AOL, MSN, Skype, Yahoo

→ video quality may not be good: why?

→ common misconception: sole culprit is network

receiver video quality:
not good (why?)

kernel space

USB/FireWire interface

user space

controller
DMA

IRQ

DMA buffer

kernel buffer

sys
call

transcoding/encoding/
transmission

video camera

Sender PC

...

CS 536 Park

Performance consequences:

hit

miss

0 500 1000 1500 2000

frame index

Video Quality: Miss vs. Hit

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000

k
e
rn

e
l
b
u
ff
e
r

s
iz

e
 (

b
y
te

s
)

time (msec)

Kernel Buffer Dynamics

CS 536 Park

Thus: pseudo real-time multimedia streaming application

of congestion control

−→ producer/consumer rate mismatch problem

Note: producer/consumer problem in OS

−→ focus on orderly access of shared data structure

−→ mutual exclusion

−→ e.g., use of counting semaphores

−→ necessary but insufficient

CS 536 Park

What is the goal:

−→ achieve Q(t) = Q∗

−→ or close to it: |Q(t)−Q∗| < ε

Basic idea:

• if Q(t) = Q∗ do nothing

• if Q(t) < Q∗ increase λ(t)

→ too little in the buffer

• if Q(t) > Q∗ decrease λ(t)

→ too much in the buffer

Rule of thumb: called control law

Since state of receiver buffer must be conveyed to sender

who adjusts λ(t):

−→ called feedback control

−→ also closed-loop control

CS 536 Park

Network protocol implementation:

→ design choices

• control action undertaken at sender

→ smart sender/dump receiver

→ preferred mode of Internet protocols

→ when might the opposite be better?

• receiver informs sender of Q∗ and Q(t)

→ feedback could just be gap Q∗ −Q(t)

→ or simply up/down binary indication

CS 536 Park

Key question in feedback congestion control:

−→ how much to increase/decrease λ(t)

Desired state of the system:

Q(t) = Q∗ and λ(t) = γ

−→ why is λ(t) = γ needed?

−→ system is in equilibrium or steady-state

Starting state:

−→ empty buffer and nothing is being sent

−→ think of iTunes, Netflix, Spotify, etc.

i.e., Q(t) = 0 and λ(t) = 0

CS 536 Park

Time evolution (or dynamics): track Q(t) and λ(t)

Q*

11 2 3 4 5 6 7 8 9 10 11 12 . . .

Q(t)

t

λ (t)

t

γ

11 2 3 4 5 6 7 8 9 10 11 12 . . .

