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Congestion Control

Phenomenon: when too much traffic enters into system,

performance degrades

−→ excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does

not occur

−→ not too fast, not too slow

−→ congestion control

−→ first question: what is congestion?
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Viewpoint: 3 components

→ (1) traffic coming in, (2) in transit, (3) going out

traffic in−flight

traffic influx traffic outfluxNetwork

At time instance t:

• traffic influx: λ(t) “offered load” (bps)

• traffic outflux: γ(t) “throughput” (bps)

• traffic in-flight: Q(t) “load” (volume, i.e., no. of packets)
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Examples:

Highway system:

• traffic influx: no. of cars entering highway per second

• traffic outflux: no. of cars exiting highway per second

• traffic in-flight: no. of cars traveling on highway

−→ at time instance t

California Dept. of Transportation (Caltrans)
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Water faucet and sink:

• traffic influx: water influx per second

• traffic outflux: water outflux per second

• traffic in-flight: water level in sink

→ not good if sink overflows

faucet.com

Many examples: heating/cooling system with thermo-

stat . . .



CS 536 Park

What is the meaning of congestion?

→ when sending too fast, throughput starts to go down

In the water faucet/sink example: is there congestion?

What about highway system?
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Example: 802.11b WLAN:

• Throughput
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−→ unimodal or bell-shaped

−→ what is load Q(t) in wireless LAN?
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What we can control:

→ traffic influx rate λ(t)

→ no power over anything else

Congestion control: how to regulate influx rate λ(t)—

not too fast, not too slow—so that throughput γ(t) is

maximized

→ many applications

→ TCP congestion control

→ multimedia video/audio streaming
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Pseudo Real-Time Multimedia Streaming:

Examples: streaming client/server apps

→ real-time vs. pseudo-real-time

“Pseudo” because of prefetching trick

→ application is given headstart before playback

→ fill & prevent client buffer from becoming empty
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Main steps:

• prefetch X seconds worth of audio/video data

→ initial playback delay

• keep fetching audio/video data such that X seconds

worth of future data resides in receiver’s buffer

→ protects against, and hides, spurious congestion

→ don’t keep more than X

→ potential for wasting resources: bandwidth, mem-

ory, CPU

If streaming is done well, user experiences continuous

playback without quality disruptions
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Pseudo real-time application architecture:

λ (t) γ

Sender Receiver

Buffer

Q Q(t)*

• Q(t): current buffer level

• Q∗: desired buffer level

• γ: throughput—fixed playback rate

→ e.g., 24 frames-per-second (fps) for movies

Goal: keep Q(t) ≈ Q∗ by adjusting λ(t)

−→ don’t buffer too much: resource wastage

−→ don’t buffer too little: cannot hide congestion
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How does load Q(t) vary?

→ obeys simple rule

Compare two time instances t and t + 1.

At time t + 1:

Q(t + 1) = Q(t) + λ(t)− γ(t)

• Q(t): what was there to begin with

• λ(t): what newly arrived

• γ(t): what newly exited

• λ(t)− γ(t): net influx (positive or negative)

• note: Q(t) cannot be negative by its meaning

→ no. of packets

→ Q(t + 1) = max{0, Q(t) + λ(t)− γ(t)}

• missing item?
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Other applications.

Ex. 1: Router congestion control

−→ active queue management (AQM)

• receiver is a router/switch

• Q∗ is desired buffer occupancy/delay at router

→ too much buffering: bufferbloat (Jim Getty)

• router throttles sender(s) to maintain Q∗

→ router sends control packets to senders

→ instruction: slow down, go faster, stay put
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Ex. 2: Desktop videoconferencing

→ e.g., AOL, MSN, Skype, Yahoo

→ video quality may not be good: why?

→ common misconception: sole culprit is network

receiver video quality:
not good (why?)

kernel space

USB/FireWire interface

user space

controller
DMA

IRQ

DMA buffer

kernel buffer

sys
call

transcoding/encoding/
transmission

video camera

Sender PC

...
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Performance consequences:

hit

miss
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Thus: pseudo real-time multimedia streaming application

of congestion control

−→ producer/consumer rate mismatch problem

Note: producer/consumer problem in OS

−→ focus on orderly access of shared data structure

−→ mutual exclusion

−→ e.g., use of counting semaphores

−→ necessary but insufficient
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What is the goal:

−→ achieve Q(t) = Q∗

−→ or close to it: |Q(t)−Q∗| < ε

Basic idea:

• if Q(t) = Q∗ do nothing

• if Q(t) < Q∗ increase λ(t)

→ too little in the buffer

• if Q(t) > Q∗ decrease λ(t)

→ too much in the buffer

Rule of thumb: called control law

Since state of receiver buffer must be conveyed to sender

who adjusts λ(t):

−→ called feedback control

−→ also closed-loop control
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Network protocol implementation:

→ design choices

• control action undertaken at sender

→ smart sender/dump receiver

→ preferred mode of Internet protocols

→ when might the opposite be better?

• receiver informs sender of Q∗ and Q(t)

→ feedback could just be gap Q∗ −Q(t)

→ or simply up/down binary indication



CS 536 Park

Key question in feedback congestion control:

−→ how much to increase/decrease λ(t)

Desired state of the system:

Q(t) = Q∗ and λ(t) = γ

−→ why is λ(t) = γ needed?

−→ system is in equilibrium or steady-state

Starting state:

−→ empty buffer and nothing is being sent

−→ think of iTunes, Netflix, Spotify, etc.

i.e., Q(t) = 0 and λ(t) = 0
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Time evolution (or dynamics): track Q(t) and λ(t)
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