Direct Link Communication II: Wireless Media

Current Trend

• WLAN explosion (also called WiFi)

 \rightarrow took most by surprise

- cellular telephony: 3G/4G
 - \rightarrow cellular providers/telcos/data in the same mix
- self-organization by citizens for local access
 - \rightarrow free WiFi hot spots
- large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 - \rightarrow part of everyday life
 - \rightarrow difficult to turn back

- boundary between local and wide area wireless blurring
 - \rightarrow cellular: long-distance vs. WLAN: local
 - \rightarrow 802.16 (WiMax): designed to compete with cellular
- also very short distances ("wireless personal area networks")
 - \rightarrow bluetooth, UWB, Zigbee: in general, 802.15
 - \rightarrow multi-use: cordless phones, WLANs, etc.
 - $\rightarrow 2.4$ and 5 GHz spectra: very busy

Integral part of the Internet: where it's happening

- \longrightarrow good news and bad news
- \longrightarrow good old #%&? radio technology

Basics of Wireless Communication

Use electromagnetic waves in wireless media (air/space) to transmit information.

 \longrightarrow NIC: air interface

- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna
 - \longrightarrow mainly: microwaves
 - \longrightarrow e.g., 2–66 GHz

Key differences with wired communication:

- increased exposure to interference and noise \rightarrow lack of physical shielding
- same frequency spectrum must be shared among all users
- inter-user interference cannot be localized at switch
 - \rightarrow cannot use buffering
 - \rightarrow problem for QoS (e.g., VoIP)
 - \longrightarrow information is inherently exposed
 - \longrightarrow bad for networking
 - \longrightarrow bad for security
 - \longrightarrow good for convenient access

• signal propagation and variation is more complex

- \longrightarrow attenuation
- \longrightarrow refraction, absorption, reflection, diffraction
- \longrightarrow multi-path fading
- \longrightarrow mobility

Network bandwidth: two extremes

- $\longrightarrow~$ high and low bandwidth coexist
- \longrightarrow e.g., 10 Gbps and 11 Mbps
- \longrightarrow here to stay
- \longrightarrow speed mismatch: makes things interesting

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz–300 GHz
- \longrightarrow Microwave: 1 GHz–1 THz
- \longrightarrow Wireless: concentration ~0.8 GHz–6 GHz
- \longrightarrow Optical fiber: ~200 THz; 25 THz bandwidth

Miscellaneous spectrum allocations (U.S.) & uses:

 \longrightarrow FCC (Federal Communications Commission)

- Voice: 300 Hz–3300 Hz
- \bullet AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz–216 MHz, 470 MHz–825 MHz

 \longrightarrow audio (FM), video (AM)

• GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz

 \longrightarrow DS-CDMA

- \longrightarrow 24 satellites (DoD), 10900 miles
- \longrightarrow navigation service: trilateration

- Cellular telephone: 824 MHz–849 MHz (upstream), 869 MHz–894 MHz (downstream)
 - \longrightarrow AMPS: FDM, analog
 - \longrightarrow GSM: TDMA, digital
 - \longrightarrow IS-95: CDMA, digital
- PCS: 1.85 GHz–1.99 GHz

 \longrightarrow CDMA, TDMA

• WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz

\longrightarrow DSSS or FHSS with CSMA/CA

- \longrightarrow same frequency range for 802.11g
- WLAN: Bluetooth 2.4 GHz–2.4835 GHz
 - \longrightarrow FH with TDD
- \bullet WLAN: IEEE 802.11a 5.725 GHz–5.850 GHz
 - \longrightarrow OFDM with CSMA/CA
- WiMax: IEEE 802.16 2 GHz–66 GHz
 - \longrightarrow TDMA based

• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925 GHz–6.425 GHz (uplink)

 \rightarrow FDMA/TDMA

- Satellite: Ku-band 11.7 Ghz–12.2 Ghz (downlink), 14 GHz–14.5 GHz (uplink)
- Many other frequency bands

 \rightarrow cf. FCC chart

Free space loss:

- transmitting antenna: signal power $P_{\rm in}$
- receiving antenna: signal power P_{out}
- distance: d
- frequency: f

$$P_{
m out} \propto P_{
m in} rac{1}{d^2 f^2}$$

 \rightarrow quadratic decrease in distance & frequency

Design implications:

- effective coverage limited by distance
 - \longrightarrow SNR: signal-to-noise ratio
 - \longrightarrow SIR: signal-to-interference ratio

spatial coverage by one high-power antenna

overlap region

spatial coverage by two low-power antennas

pros & cons? \rightarrow

- low power output decreases cell size
 - \longrightarrow increased battery life
 - \longrightarrow enables frequency reuse
 - \longrightarrow more antennas required
 - \longrightarrow handoff coordination overhead
 - \longrightarrow e.g., I65 from Lafayette to Indy

Hexagonal cells:

0	0	0	
0	0	0	
0	0	0	

- \longrightarrow both affect tiling of the plane
- \longrightarrow why hexagonal?

Frequency reuse: adjacent cells do not use common carrier frequency.

- \rightarrow avoid interference
- \longrightarrow how many frequencies are required?

For example, using seven frequencies:

- \longrightarrow why does it work?
- \longrightarrow in general, coloring problem

4-coloring of U.S. map:

 \rightarrow Y. Kanada, Y. Sato; Univ. of Tokyo

First floor frequency reuse:

Computer Science Building - First Floor

Second floor frequency reuse:

Ground floor frequency reuse:

Computer Science Building - Ground Floor

Non-uniform covering:

- \longrightarrow directional antenna
- \longrightarrow non-uniform density

Non-uniform frequency allocation:

- \longrightarrow total carrier frequency budget: 35
- \longrightarrow frequency borrowing

uniform frequency allocation

non-uniform frequency allocation