Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 → also called “distance vector”
 → metric: hop count
 → UDP
 → nearest neighbor advertisement
 → popular in small intra-domain networks

- OSPF (v1 and v2): intra-domain, Dijkstra
 → also called “link state”
 → metric: average delay
 → directly over IP: protocol number 89
 → broadcasting via flooding
 → popular in larger intra-domain networks
• IS-IS: intra-domain, Dijkstra
 → “link state”
 → directly over link layer (e.g., Ethernet)
 → more recently: also available over IP
 → flooding
 → popular in larger intra-domain networks

• Source routing: packet specifies path
 → implemented in various link layer protocols
 → ATM call set-up: circuit-switching
 → IPv4/v6: option field
 → mostly disabled
 → large ISPs: sometimes used internally for diagnosis
BGP (Border Gateway Protocol):

- Inter-domain routing
 - border routers vs. backbone routers

→ “peering” between two AS’s
→ includes customer-provider relationship
→ exchanges: peering between multiple AS’s
• CIDR addressing
 \[\text{i.e., } a.b.c.d/x \]
 \[\rightarrow \text{Purdue: } 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20 \]
 \[\rightarrow \text{check at www.iana.org (e.g., ARIN for US)} \]
• Route table look-up: maximum prefix matching
 \[\rightarrow \text{e.g., entries: } 128.10.0.0/16 \text{ and } 128.10.27.0/24 \]
 \[\rightarrow \text{destination address } 128.10.27.20 \text{ matches } 128.10.27.0/24 \text{ best} \]
• Metric: policy
 \[\rightarrow \text{e.g., shortest-path, trust, pricing} \]
 \[\rightarrow \text{meaning of “shortest”: delay, router hop, AS hop} \]
 \[\rightarrow \text{route amplification: shortest AS path } \neq \text{ shortest router path} \]
 \[\rightarrow \text{mechanism: path vector routing} \]
 \[\rightarrow \text{BPG update message} \]
BGP route update:

\[\rightarrow \text{BGP update message propagation} \]

BGP update message:

\[ASN_{A_k} \rightarrow \cdots \rightarrow ASN_{A_2} \rightarrow ASN_{A_1}; a.b.c.d/x \]

Meaning: ASN \(A_1 \) (with CIDR address a.b.c.d/x) can be reached through indicated path

\[\rightarrow \text{“path vector”} \]

\[\rightarrow \text{called AS-PATH} \]

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka “Internet2”): 11537
Purdue’s backbone network (Fall 2004): ITaP
Level3 backbone network: www.level3.com

→ 10 Gbps backbone (same as Purdue)
→ part of backbone: OC-48 (2.488 Gbps)
Abilene/Internet2 backbone: www.internet2.edu
Policy:

- if multiple AS-PATHs to target AS are known, choose one based on policy

 → e.g., shortest AS path length, cheapest, least worrisome

- advertise to neighbors target AS’s reachability

 → also subject to policy

 → no obligation to advertise

 → specifics depend on bilateral contract (SLA)

SLA (service level agreement):

 → bandwidth (e.g., 1 Gbps, OC-3, DS3)

 → delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)

 → pricing (e.g., 1 Mbps: below $100)

 → availability (e.g., 99.999%)

 → etc.
Ex:

- AS F
- AS C
- AS B
- AS A
- AS H
- AS D
- AS G
- AS E

Diagram:

- AS F -> AS B -> AS A; a.b.c.d/x
- AS H -> AS D -> AS B -> AS A; a.b.c.d/x
- AS G -> AS D -> AS B -> AS A; a.b.c.d/x
- Purdue: ASN 17; 128.10.0.0/16
BGP-update procedure:

Upon receiving BGP update message from neighbor to target AS A

1. Store AS-PATH reachability info for target A
 \rightarrow AdjIn table (one per neighbor)

2. Determine if new path to A should be adopted
 \rightarrow policy
 \rightarrow path should be unique
 \rightarrow BPG table (locRIB) & IP routing table update
 \rightarrow inter-domain: IP table update from BGP

3. Determine who to advertise reachability for target A
 \rightarrow selective advertisement

Note: if shortest-path then same as Dijkstra in-reverse
BGP-withdrawal:
1. Use BGP keep-alive message to sense neighbor
 → timeout
2. If keep-alive does not arrive within timeout, assume node is down
3. Send BGP withdraw message for neighbor who is deemed down if no alternative path exists; else send BGP update message
 → may trigger further updates

Other BGP features:
- BGP runs over TCP
 → port number 179
 → i.e., “application layer” protocol
- BPG-4 (1995); secure BGP
 → S-BGP: not implemented yet (“BBN vs. Cisco”)
Performance

Route update frequency:

→ routing table stability vs. responsiveness
→ rule: not too frequently
→ 30 seconds
→ stability wins
→ hard lesson learned from the past (sub-second)
→ legacy: TTL

Other factors for route instability:

→ selfishness (e.g., fluttering)
→ BGP’s vector path routing: inherently unstable
→ more common: slow convergence
→ target of denial-of-service (DoS) attack
Route amplification:

→ shortest AS path \(\neq \) shortest router path

→ e.g., may be several router hops longer

→ AS graph vs. router graph

→ inter- vs. intra-domain routing: separate subsystems

→ policy: company in Denmark

Route asymmetry:

→ routes are not symmetric

→ estimate: > 50%

→ mainly artifact of inter-domain policy routing

→ various performance implications

→ source traceback
Black holes:

\rightarrow persistent unreachable destination prefixes
\rightarrow BGP routing problems
\rightarrow further aggrevated by DNS
\rightarrow purely application layer: end system problem
Topology:

→ who is connected to whom

→ Internet AS graph (segment of Jan. 2002)
Contrast with random graph: same number of nodes and edges

\[\rightarrow \text{random graph: choose each link with prob. } p \]

\[\rightarrow \text{independently: prob. of } k \text{ neighbors is } p^k \]
Phenomenon:

\[\Pr\{u \text{ has } k \text{ neighbors}\} \propto k^{-\alpha} \quad (2 < \alpha < 3) \]

\[\text{called power-law graph} \]

In contrast to random graph:

\[\Pr\{u \text{ has } k \text{ neighbors}\} \propto p^k \]

\[\text{probability is exponentially small in } k \]

\[\text{UUNET (AS 701) has } > 2500 \text{ neighbors!} \]

\[> 12500 \text{ domains in 2002} \]

\[\text{probabilistically UUNET should not exist} \]

\[\text{so things are not random} \]

What’s going on . . .

\[\text{connection to airlines?} \]
Ex.: Delta Airlines route map

→ by design: hub and backbone architecture
→ mixture of centralized/decentralized design
→ small system: centralized is good
→ large system: decentralization necessary
Small system with centralized design:

→ star topology

→ e.g., Southwest Airlines

→ essentially two conjoined star topologies

→ a matter of load balancing

→ backbone topology: trivial
Simple backbone topologies comprised of stars:

- ring of stars
- mesh of stars
- random/planar backbone of stars
- tree (hierarchy) of stars

\[\Pr\{\deg(u) = k\} \propto k^{-\alpha} \]

- different star sizes
- cliques: peering at exchange points
- tier’ed hierarchy
- sparse backbone: random-like
View as “molecular stew” of lego-like building blocks:

\[n \Pr(\deg(u)=4) \]

→ “stir” stew of ingredients until graph is formed

→ no dangling links

The aforementioned: structural design point-of-view

“A few are connected to many, many are connected to a few.”

Dynamic point-of-view:

→ “The rich get richer, the poor get poorer.”

→ growth process: preferential attachment

→ attach to \(u \) with probability \(\propto \deg(u) \)

→ makes sense up to a point
Performance implications:

- bad: single point of “failure”
 - note domains don’t fail like routers
- bad: severe load imbalance
 - perform similar calculation as ad hoc
- good: “Checkpoint Charlie”
 - can detect and act on bad traffic efficiently
 - small deployment but large impact
 - e.g., worm and DDoS attack traffic filtering
- good: caching put content close to demand: efficiency

Power-law connectivity: not restricted to domain graphs

 - e.g., WWW, call, router, metabolic networks
 - social sciences: 1950s and earlier
 - Milgram’s “small world” (six degrees of separation)