Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 - \rightarrow also called "distance vector"
 - \rightarrow metric: hop count

 $\rightarrow \text{UDP}$

- \rightarrow nearest neighbor advertisement
- \rightarrow popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
 - \rightarrow also called "link state"
 - \rightarrow metric: average delay
 - \rightarrow directly over IP: protocol number 89
 - \rightarrow broadcasting via flooding
 - \rightarrow popular in larger intra-domain networks

- \rightarrow "link state"

• IS-IS: intra-domain, Dijkstra

- \rightarrow directly over link layer (e.g., Ethernet)
- \rightarrow more recently: also available over IP
- \rightarrow flooding
- \rightarrow popular in larger intra-domain networks
- Source routing: packet specifies path
 - \rightarrow implemented in various link layer protocols
 - \rightarrow ATM call set-up: circuit-switching
 - \rightarrow IPv4/v6: option field
 - \rightarrow mostly disabled
 - \rightarrow large ISPs: sometimes used internally for diagnosis

- Inter-domain routing
 - \rightarrow border routers vs. backbone routers

- \longrightarrow "peering" between two AS's
- \longrightarrow includes customer-provider relationship
- \longrightarrow exchanges: peering between multiple AS's

- CIDR addressing
 - \rightarrow i.e., a.b.c.d/x
 - \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - \rightarrow check at www.iana.org (e.g., ARIN for US)
- Route table look-up: maximum prefix matching
 - \rightarrow e.g., entries: 128.10.0.0/16 and 128.10.27.0/24
 - \rightarrow destination address 128.10.27.20 matches 128.10.27.0/24 best
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - \rightarrow meaning of "shortest": delay, router hop, AS hop
 - \rightarrow route amplification: shortest AS path \neq shortest router path
 - \rightarrow mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

 \longrightarrow BGP update message propagation

BGP update message:

 $ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1; a.b.c.d/x$

Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

 \longrightarrow "path vector"

 \longrightarrow called AS-PATH

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537

12223 ALRO ST CONF HOM HOM HOM HOM HOM init rel ites CAH 10,00 8.3 NACTOR IN ARE RECEIPTED CONTRACTOR CONTRACT 1.548/2 10546 1646 1.666 2 Ggl Purdue University Data Network 10 Olph Version 1.3 NOC Copy

Purdue's backbone network (Fall 2004): ITaP

Level3 backbone network: www.level3.com

LEVEL 3 IP BACKBONE

 \rightarrow 10 Gbps backbone (same as Purdue)

 \longrightarrow part of backbone: OC-48 (2.488 Gbps)

Abilene/Internet2 backbone: www.internet2.edu

Abilene International Network Peers

via APAN/TransPAC: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREONET2, PREGINET, SingAREN, TANET2, ThaiSARN, WIDE (v6) ** via GLORIAD: CSTNET, RBnet

- if multiple AS-PATHs to target AS are known, choose one based on policy
 - \rightarrow e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
 - \rightarrow also subject to policy
 - \rightarrow no obligation to advertise
 - \rightarrow specifics depend on bilateral contract (SLA)
- SLA (service level agreement):
 - \longrightarrow bandwidth (e.g., 1 Gbps, OC-3, DS3
 - \longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)
 - \longrightarrow pricing (e.g., 1 Mbps: below \$100)
 - \longrightarrow availability (e.g., 99.999%)
 - \longrightarrow etc.

BGP-update procedure:

Upon receiving BGP update message from neighbor to target AS ${\cal A}$

- 1. Store AS-PATH reachability info for target ${\cal A}$
 - \rightarrow AdjIn table (one per neighbor)
- 2. Determine if new path to A should be adopted \rightarrow policy
 - \rightarrow path should be unique
 - \rightarrow BPG table (locRIB) & IP routing table update
 - \rightarrow inter-domain: IP table update from BGP
- 3. Determine who to advertise reachability for target A
 - \rightarrow selective advertisement

Note: if shortest-path then same as Dijkstra in-reverse

BGP-withdrawal:

- 1. Use BGP keep-alive message to sense neighbor
 - \rightarrow timeout
- 2. If keep-alive does not arrive within timeout, assume node is down
- 3. Send BGP withdraw message for neighbor who is deemed down if no alternative path exists; else send BGP update message
 - \rightarrow may trigger further updates

Other BGP features:

- BGP runs over TCP
 - \rightarrow port number 179
 - \rightarrow i.e., "application layer" protocol
- BPG-4 (1995); secure BGP

 \rightarrow S-BGP: not implemented yet ("BBN vs. Cisco")

Performance

Route update frequency:

- \longrightarrow routing table stability vs. responsiveness
- \longrightarrow rule: not too frequently
- \longrightarrow 30 seconds
- \longrightarrow stability wins
- \longrightarrow hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

- \longrightarrow selfishness (e.g., fluttering)
- \longrightarrow BGP's vector path routing: inherently unstable
- \longrightarrow more common: slow convergence
- \longrightarrow target of denial-of-service (DoS) attack

Route amplification:

- \longrightarrow shortest AS path \neq shortest router path
- \longrightarrow e.g., may be several router hops longer
- \longrightarrow AS graph vs. router graph
- \longrightarrow inter- vs. intra-domain routing: separate subsystems
- \longrightarrow policy: company in Denmark

Route asymmetry:

- \longrightarrow routes are not symmetric
- \longrightarrow estimate: > 50%
- \longrightarrow mainly artifact of inter-domain policy routing
- \longrightarrow various performance implications
- \longrightarrow source traceback

Black holes:

- \longrightarrow persistent unreachable destination prefixes
- \longrightarrow BGP routing problems
- \longrightarrow further aggrevated by DNS
- \longrightarrow purely application layer: end system problem

Topology:

- \longrightarrow who is connected to whom
- \longrightarrow Internet AS graph (segment of Jan. 2002)

Contrast with random graph: same number of nodes and edges

- \rightarrow random graph: choose each link with prob. p
- \longrightarrow independently: prob. of k neighbors is p^k

- \longrightarrow Pr{u has k neighbors} $\propto k^{-\alpha}$ (2 < α < 3)
- \longrightarrow called power-law graph

In contrast to random graph:

- \longrightarrow Pr{u has k neighbors} $\propto p^k$
- \longrightarrow probability is exponentially small in k
- \longrightarrow UUNET (AS 701) has > 2500 neighbors!
- \longrightarrow > 12500 domains in 2002
- \longrightarrow probabilistically UUNET should not exist
- \longrightarrow so things are not random

What's going on ...

 \longrightarrow connection to airlines?

Ex.: Delta Airlines route map

- \longrightarrow by design: hub and backbone architecture
- \longrightarrow mixture of centralized/decentralized design
- \longrightarrow small system: centralized is good
- \longrightarrow large system: decentralization necessary

Small system with centralized design:

- \longrightarrow star topology
- \longrightarrow e.g., Southwest Airlines

- \longrightarrow essentially two conjoined star topologies
- \longrightarrow a matter of load balancing
- \longrightarrow backbone topology: trivial

Simple backbone topologies comprised of stars:

- \longrightarrow cliques: peering at exchange points
- \longrightarrow tier'ed hierarchy
- \longrightarrow sparse backbone: random-like

 \longrightarrow "stir" stew of ingredients until graph is formed \longrightarrow no dangling links

The aforementioned: structural design point-of-view

"A few are connected to many, many are connected to a few."

Dynamic point-of-view:

- \longrightarrow "The rich get richer, the poor get poorer."
- \longrightarrow growth process: preferential attachment
- \longrightarrow attach to *u* with probability $\propto \deg(u)$
- \longrightarrow makes sense up to a point

Performance implications:

• bad: single point of "failure"

 \rightarrow note domains don't fail like routers

• bad: severe load imbalance

 \rightarrow perform similar calculation as ad hoc

- good: "Checkpoint Charlie"
 - \rightarrow can detect and act on bad traffic efficiently
 - \rightarrow small deployment but large impact
 - \rightarrow e.g., worm and DDoS attack traffic filtering
- \bullet good: caching put content close to demand: efficiency

Power-law connectivity: not restricted to domain graphs

- \longrightarrow e.g., WWW, call, router, metabolic networks
- \longrightarrow social sciences: 1950s and earlier
- \longrightarrow Milgram's "small world" (six degrees of separation)