CS 536 Park

Before proceeding to bad news:
— connection between heavy-tailedness and google?
— saga of two lucky kids (aka “grad students”)

—— lesson to be drawn?
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Now, to the bad news!

Bad news #1: queueing

Oxff

SRAM

on of f

write read

0xfo

e influx rate (write) < outflux rate (read)
— else buffer will grow out of bound

e during on-time: if write rate < read rate
— then what?
— economy dictates opposite (suppose 1/2)

— hence: during on-time buffer grows (McDonald’s)
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Since on/off input is random, so is the buffer/memory
occupancy

— at time ¢, could be 10 KB, 120 KB, etc.
— ie., Pr{@Q(t) = 10000} = some value, .

Want to know: in the long-run (¢ — oo) what is Q(¢)7
— write as (Q(00)
— practical interest: Pr{Q(oc0) > x} 7

—— corresponds to excessive delay, buffer loss, etc.

Case I: what shape does Pr{@Q(oc0) > x} take when both
on and off periods are exponential?

— assume i.i.d. (with be_bt)

—— first, switch from time unit to count unit
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e alternating on/off periods: mutually independent
e how many on and off periods (n) at time ¢?

— n~t/(Elon]+ Eloff]) =t/(; + 1) = bt/2

— for large t

e sum of n on-periods: 5,

— let’s upper-bound Pr{Q(t) > =}
— ie, Pr{Q(t) > x} <
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Upper-bounding idea:
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e worst-case viewpoint

— ignore the beneficial effect of off periods

— McDonald’s: groups of people arrive without pause
e thus, to have Q(t) > x:

— Sp/2 >

— 1.e., at the very least

— hence: Pr{Q(t) > x} < Pr{S, > 2z}
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e need to upper bound Pr{S, > 2x}

— for large x (i.e., 2z > nFE|on])
Pr{S, > 2z} = Pr{S, — nFE|on| > 2x — nFE|on|}
= Pr{S,/n — Elon] > 2z/n — Elon|}
— by LLN §,, is concentrated around its mean!
e we can apply large deviation bound
— Pr{|2 g > e} < e
— here: € = 2x/n — E|on]
— recall: a depends on €
e facts: shape of a(e)
— binary case: a = elog s + (1 —¢)log }%;
— exponential case: a = be — 1 — log be

— for large € (same as large x): a = be
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e apply large deviation bound to S,
pPr{S, > 2z} = Pr{S,/n — Flon| > 2z/n — Elon|}

< 6—CLTL

~ 6—b5n
e—b(2x/n—E[on])n
_ 6—2bx+bE[0n]n
€

—2bx+n

< e b7

— for sufficiently large = (used several times)

Thus: Pr{Q(t) > z} < e for large z and ¢
— Pr{Q(oo) > 2} < 7 for large x
—— prob. of queue growing large: exponentially small
—— for exponential traffic: buffering is effective

— extra buffer/memory y buys a lot:

Pf{Q(OO) >+ y} < e—b(aH—y) — e—bxe—by
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Remarks: analysis method

—

—

con: only holds for large x

pro: very general /powerful

for exponential case: “excessive force”
somewhat like “catching fly with a cannon”
can use more elementary methods

a course in queueing theory (Markovian input)
problem: doesn’t extend to heavy-tailed input

but the Internet is heavy-tailed!
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Case 1I: shape of Pr{@Q(co) > 2} when off-period is ex-
ponential but on-period is heavy-tailed?

—

S

—

—

want to show: Pr{@Q(oco) > x} is heavier as well
want to contrast with exponential case

let’s lower-bound: Pr{Q(t) > x} >

why upper-bounding not enough?

Lower-bounding idea:

—

—

Oxff

l ‘ SRAM

read

0xf0

n independent samples
from heavy-tailed distribution

sampling viewpoint: ok since i.i.d.

wait till first long (> 2x) on-period
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e how long must one wait?
— on the order of 1/ Pr{Z >z} =1/ca™ x x°
— 80, time scale of interest: t = O(x®)
e number on and off periods at time ¢
— n = t/(Eon] + Eloff]) = §t = O(x®)
— for large t (hence large x)

e now: Pr{Q(t) > x} = fraction of time during O(z?)
where queue is bigger than x

— O(z/2%) = O(z'~)
— where did we apply similar reasoning?

long on—period O(x)

off ‘

ﬂ’o—n‘ﬂﬂ ‘ ) ‘”'ﬂm'”time

n-block O(x*)
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e note: we ignored the contribution of other on periods
— hence: lower-bound

e thus: for large x and ¢
— Pr{Q(t) > x} > O(z'7)
— tail Pr{@Q(oco) > x} is at least polynomially heavy
— can also show polynomially upper-bounded
— much more likely to overcrowd
— buffering is not as effective: marginal gain small

— modern view: bandwidth-centric resource provi-
sioning



CS 536 Park

Remarks:

e heavy-tailed on-times and resultant heavy-tailed queue-
ing was a big surprise

— grabbed CS, EE; statistics/probability, OR, some
physicists, etc. by surprise!

— huge scientific impact
e one technical aside: for heavy-tailed i.i.d. variables
Pr{Zi+---+Z, >z} =Pr{max{%,..., Z,} > x}
— for large x
— when the sum is large, one guy is to blame!
— single long on-period picture: accurate
— yields upper bound
— starkly different from exponential: equal blame

— implication to sampling and simulation: slow convergence
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Sample mean convergenge rate: exponential vs. Pareto
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Lastly: characteristic of aggregate traffic

— multiple on/off sources

Recall:

X1(t) ON OFF ON | OFF ON OFF

X(0 ] ] |
X0 |

X (t) i H H ] N ‘

— with many on/off sessions, what does X (¢) look like?

— it’s fractal, i.e., self-similar!
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Some fractal objects:

Menger sponge (picture from www.ics.uci.edu/~eppstein):

bl
~

Fractal fern:

— are fractal objects random?
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Internet traffic: measurement
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— traffic time series (at 10ms granularity)
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Aggregation (time):

SRR AR

Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110mS wus

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Oms 100ms 200ms 300ms

—— analogous to computing sample mean
— aggregation over multiple time scales

—— what to expect?
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Internet; self-similar
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We observe:

e for Internet traffic burstiness preserved across time
scales five orders of magnitude apart

— Poisson traffic: smoothes out quickly

e if traffic were uncorrelated in time, by LLN should
smooth out

— how fast should it smooth out?
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Self-similar burstiness viewpoint:

Time aggregation of X (¢) at level m means

Since X (t) are random variables, X ™ (7) in time series
is analogous to computing the sample mean.

The visual phenomenon of “burstiness preservation” cor-
responds to

var(X ™ (7)) & var(X (t))

for a range of time scales m.
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If the X (¢)’s were independent, then
var(X™ (1)) = o%m ™!
where o is the variance of the X (¢)’s.

— elementary fact

Consider rewriting expression with parameter H as

52— 2(1-H)

where 1/2 < H < 1.

If H = 1/2, then we have previous expression o2 /m.

—— 0 decays at rate m~!
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If 1/2 < H < 1, then rate of decay is slower.

— m P where 0 < 8 < 1

Thus, if H ~ 1, then can expect
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var(X ™ (3)) & var(X (t))

—— burstiness dies out very slowly w.r.t. scaling
— empirically: H is 0.8-0.9 range
— X (t) must be strongly correlated in time

——  what causes it?
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The principal cause: heavy-tailed file sizes!
—— present impacts distant future

—— recall predictability discussion

y (8%
PriZ >x+y| 4 > =
r{ T+ y| y} (y+x)

—— predictability also leads to long-term correlation
—— consequences: heavy-tailed queueing
—— periods of over- and under-utilization

—— bad for resource provisioning
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