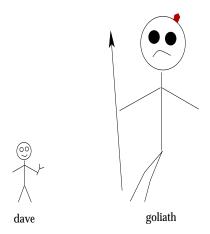
Before proceeding to bad news:

→ connection between heavy-tailedness and google?

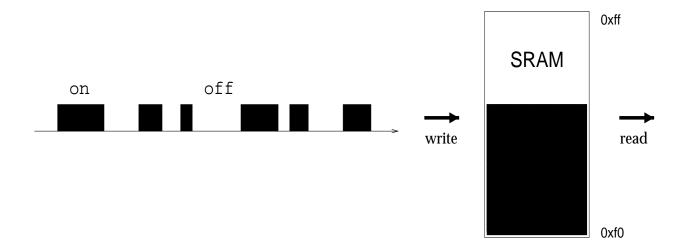
→ saga of two lucky kids (aka "grad students")

 \longrightarrow lesson to be drawn?



Now, to the bad news!

Bad news #1: queueing



- influx rate (write) < outflux rate (read)
 - \rightarrow else buffer will grow out of bound
- during on-time: if write rate < read rate
 - \rightarrow then what?
 - \rightarrow economy dictates opposite (suppose 1/2)
 - → hence: during on-time buffer grows (McDonald's)

Since on/off input is random, so is the buffer/memory occupancy

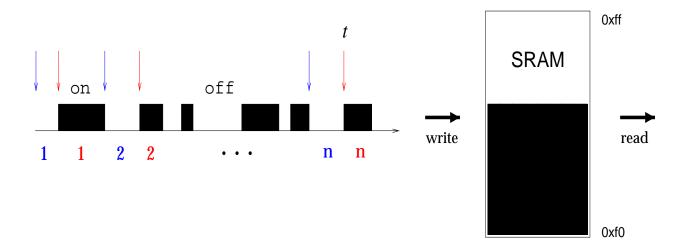
- \longrightarrow at time t, could be 10 KB, 120 KB, etc.
- \longrightarrow i.e., $Pr{Q(t) = 10000} = \text{some value}, \dots$

Want to know: in the long-run $(t \to \infty)$ what is Q(t)?

- \longrightarrow write as $Q(\infty)$
- \longrightarrow practical interest: $\Pr\{Q(\infty) > x\}$?
- ---- corresponds to excessive delay, buffer loss, etc.

Case I: what shape does $\Pr\{Q(\infty) > x\}$ take when both on and off periods are exponential?

- \longrightarrow assume i.i.d. (with be^{-bt})
- → first, switch from time unit to count unit



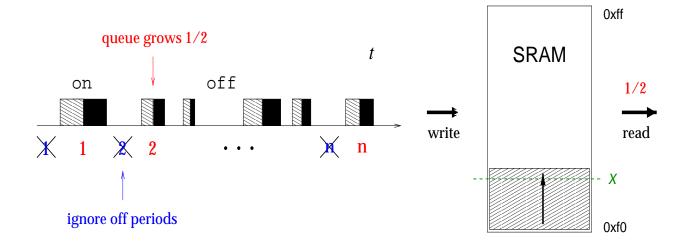
- alternating on/off periods: mutually independent
- how many on and off periods (n) at time t?

$$\to n \approx t/(E[\text{on}] + E[\text{off}]) = t/(\frac{1}{b} + \frac{1}{b}) = bt/2$$

- \rightarrow for large t
- sum of n on-periods: S_n
 - \longrightarrow let's upper-bound $\Pr\{Q(t) > x\}$

$$\longrightarrow$$
 i.e., $\Pr\{Q(t) > x\} < ?$

Upper-bounding idea:



- worst-case viewpoint
 - \rightarrow ignore the beneficial effect of off periods
 - → McDonald's: groups of people arrive without pause
- thus, to have Q(t) > x:

$$\rightarrow S_n/2 > x$$

- \rightarrow i.e., at the very least
- \rightarrow hence: $\Pr\{Q(t) > x\} < \Pr\{S_n > 2x\}$

• need to upper bound $\Pr\{S_n > 2x\}$

$$\rightarrow$$
 for large x (i.e., $2x > nE[on]$)

$$\Pr\{S_n > 2x\} = \Pr\{S_n - nE[on] > 2x - nE[on]\}$$

= $\Pr\{S_n/n - E[on] > 2x/n - E[on]\}$

- \rightarrow by LLN S_n is concentrated around its mean!
- we can apply large deviation bound

$$\rightarrow \Pr\{\left|\frac{S_n(t)}{n} - p\right| > \varepsilon\} < e^{-an}$$

$$\rightarrow$$
 here: $\varepsilon = 2x/n - E[on]$

- \rightarrow recall: a depends on ε
- facts: shape of $a(\varepsilon)$
 - \rightarrow binary case: $a = \varepsilon \log \frac{\varepsilon}{p} + (1 \varepsilon) \log \frac{1 \varepsilon}{1 p}$
 - \rightarrow exponential case: $a = b\varepsilon 1 \log b\varepsilon$
 - \rightarrow for large ε (same as large x): $a \approx b\varepsilon$

• apply large deviation bound to S_n

$$\Pr\{S_n > 2x\} = \Pr\{S_n/n - E[\text{on}] > 2x/n - E[\text{on}]\}$$

$$< e^{-an}$$

$$\approx e^{-b\varepsilon n}$$

$$= e^{-b(2x/n - E[\text{on}])n}$$

$$= e^{-2bx + bE[\text{on}]n}$$

$$= e^{-2bx + n}$$

$$< e^{-bx}$$

 \rightarrow for sufficiently large x (used several times)

Thus: $Pr{Q(t) > x} < e^{-bx}$ for large x and t

- $\longrightarrow \Pr\{Q(\infty) > x\} < e^{-bx} \text{ for large } x$
- → prob. of queue growing large: exponentially small
- → for exponential traffic: buffering is effective
- \longrightarrow extra buffer/memory y buys a lot:

$$\Pr\{Q(\infty) > x + y\} < e^{-b(x+y)} = e^{-bx}e^{-by}$$

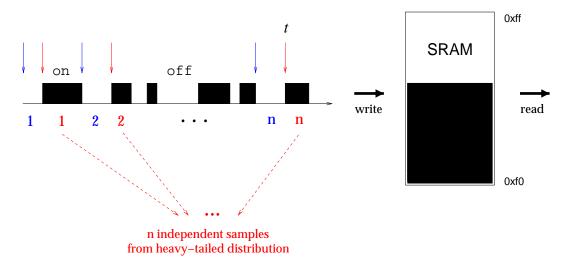
Remarks: analysis method

- \longrightarrow con: only holds for large x
- → pro: very general/powerful
- → for exponential case: "excessive force"
- → somewhat like "catching fly with a cannon"
- → can use more elementary methods
- → a course in queueing theory (Markovian input)
- ---- problem: doesn't extend to heavy-tailed input
- \longrightarrow but the Internet is heavy-tailed!

Case II: shape of $\Pr\{Q(\infty) > x\}$ when off-period is exponential but on-period is heavy-tailed?

- \longrightarrow want to show: $\Pr\{Q(\infty) > x\}$ is heavier as well
- → want to contrast with exponential case
- \longrightarrow let's lower-bound: $\Pr\{Q(t) > x\} > \boxed{?}$
- \longrightarrow why upper-bounding not enough?

Lower-bounding idea:



- \longrightarrow sampling viewpoint: ok since i.i.d.
- \longrightarrow wait till first long (> 2x) on-period

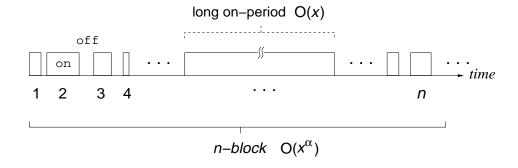
- how long must one wait?
 - \rightarrow on the order of $1/\Pr\{Z>x\}=1/cx^{-\alpha}\propto x^{\alpha}$
 - \rightarrow so, time scale of interest: $t = O(x^{\alpha})$
- \bullet number on and off periods at time t

$$\rightarrow n \approx t/(E[\text{on}] + E[\text{off}]) = \delta t = O(x^{\alpha})$$

- \rightarrow for large t (hence large x)
- now: $\Pr\{Q(t) > x\} \approx \text{fraction of time during } O(x^{\alpha})$ where queue is bigger than x

$$\rightarrow O(x/x^{\alpha}) = O(x^{1-\alpha})$$

 \rightarrow where did we apply similar reasoning?



• note: we ignored the contribution of other on periods

- \rightarrow hence: lower-bound
- \bullet thus: for large x and t

$$\rightarrow \Pr\{Q(t) > x\} > O(x^{1-\alpha})$$

- \rightarrow tail $\Pr\{Q(\infty) > x\}$ is at least polynomially heavy
- \rightarrow can also show polynomially upper-bounded
- → much more likely to overcrowd
- \rightarrow buffering is not as effective: marginal gain small
- → modern view: bandwidth-centric resource provisioning

Remarks:

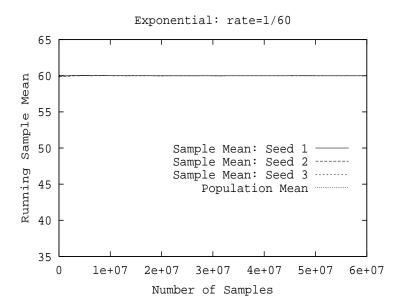
• heavy-tailed on-times and resultant heavy-tailed queueing was a big surprise

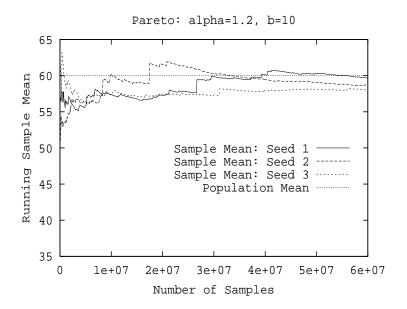
- → grabbed CS, EE, statistics/probability, OR, some physicists, etc. by surprise!
- \rightarrow huge scientific impact
- one technical aside: for heavy-tailed i.i.d. variables

$$\Pr\{Z_1 + \dots + Z_n > x\} = \Pr\{\max\{Z_1, \dots, Z_n\} > x\}$$

- \rightarrow for large x
- \rightarrow when the sum is large, one guy is to blame!
- → single long on-period picture: accurate
- \rightarrow yields upper bound
- \rightarrow starkly different from exponential: equal blame
- \rightarrow implication to sampling and simulation: slow convergence

Sample mean convergenge rate: exponential vs. Pareto

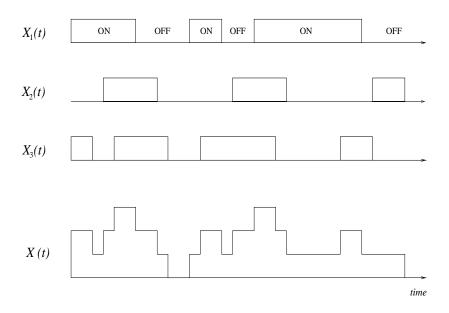




Lastly: characteristic of aggregate traffic

→ multiple on/off sources

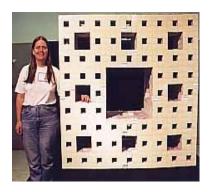
Recall:



- \longrightarrow with many on/off sessions, what does X(t) look like?
- \longrightarrow it's fractal, i.e., self-similar!

Some fractal objects:

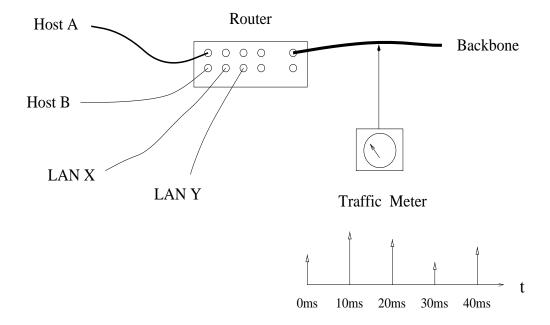
Menger sponge (picture from www.ics.uci.edu/~eppstein):



Fractal fern:

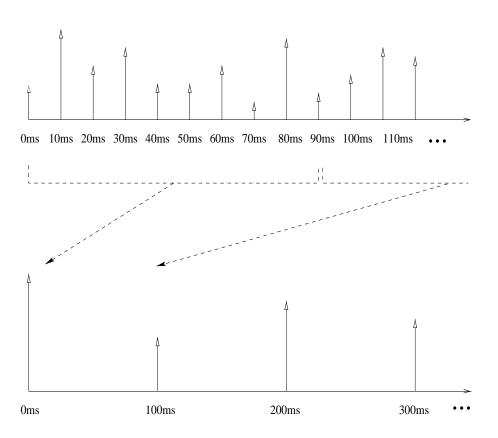
→ are fractal objects random?

Internet traffic: measurement



 \longrightarrow traffic time series (at 10ms granularity)

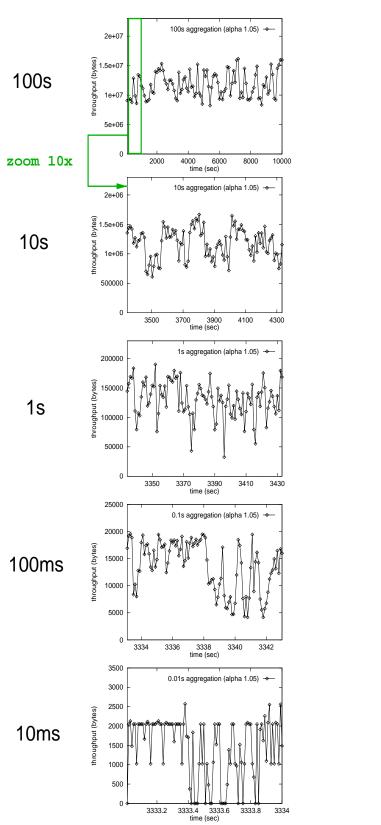
Aggregation (time):

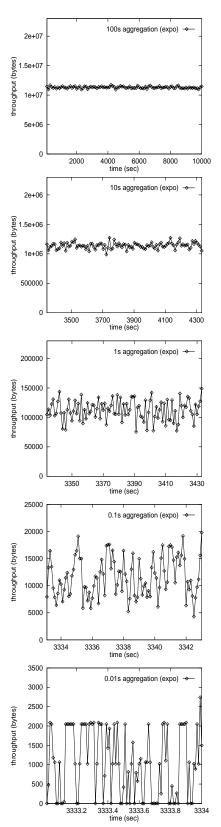


- → analogous to computing sample mean
- → aggregation over multiple time scales
- \longrightarrow what to expect?

Internet: self-similar

Telephony: Poisson-like





We observe:

• for Internet traffic burstiness preserved across time scales five orders of magnitude apart

- \rightarrow Poisson traffic: smoothes out quickly
- if traffic were uncorrelated in time, by LLN should smooth out
 - \rightarrow how fast should it smooth out?

Self-similar burstiness viewpoint:

Time aggregation of X(t) at level m means

$$X^{(m)}(i) = \frac{1}{m} \sum_{t=m(i-1)+1}^{mi} X(t).$$

Since X(t) are random variables, $X^{(m)}(i)$ in time series is analogous to computing the sample mean.

The visual phenomenon of "burstiness preservation" corresponds to

$$\operatorname{var}(X^{(m)}(i)) \approx \operatorname{var}(X(t))$$

for a range of time scales m.

If the X(t)'s were independent, then

$$\operatorname{var}(X^{(m)}(i)) = \sigma^2 m^{-1}$$

where σ^2 is the variance of the X(t)'s.

→ elementary fact

Consider rewriting expression with parameter H as

$$\sigma^2 m^{-2(1-H)}$$

where $1/2 \le H < 1$.

If H = 1/2, then we have previous expression σ^2/m .

 $\longrightarrow \sigma^2$ decays at rate m^{-1}

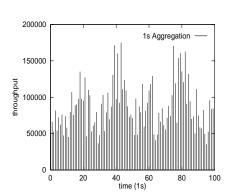
If 1/2 < H < 1, then rate of decay is slower.

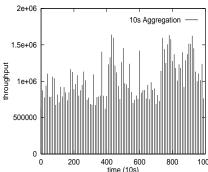
 $\longrightarrow m^{-\beta}$ where $0 < \beta < 1$

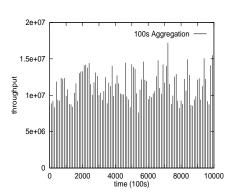
Thus, if $H \approx 1$, then can expect

$$\operatorname{var}(X^{(m)}(i)) \approx \operatorname{var}(X(t))$$

- → burstiness dies out very slowly w.r.t. scaling
- \longrightarrow empirically: *H* is 0.8–0.9 range
- $\longrightarrow X(t)$ must be strongly correlated in time
- \longrightarrow what causes it?







The principal cause: heavy-tailed file sizes!

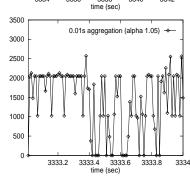
- ---- present impacts distant future
- → recall predictability discussion

$$\Pr\{Z > x + y \mid Z > y\} = \left(\frac{y}{y + x}\right)^{\alpha}$$

- → predictability also leads to long-term correlation
- → consequences: heavy-tailed queueing
- → periods of over- and under-utilization
- → bad for resource provisioning

Internet: self-similar

100s aggregation (alpha 1.05) → 2e+07 5e+06 4000 6000 time (sec) 8000 10000 10s aggregation (alpha 1.05) → 2e+06 peak throughput (bytes) 1.5e+06 1e+06 avrg 500000 3500 3700 3900 time (sec) 4300 4100 1s aggregation (alpha 1.05) 200000 throughput (bytes) 120000 100000 50000 3350 3370 3390 time (sec) 3410 3430 25000 0.1s aggregation (alpha 1.05) -20000 throughput (bytes) 15000 10000 5000 3336 3338 time (sec) 3340 3342



throughput (bytes)

Telephony: Poisson-like

