CS 536 Park

Memoryless property:

e suppose time between session arrivals Z is exponen-
tially distributed

— note: Pr{Z >y} = fyoo be Vdt = e~
e suppose a session has not arrived for y seconds

e what is the probability that a session will not arrive
for another x seconds?

—ie, Pr{Z >z +y|Z>y}?

By conditioning;:

Pr{Z >z + y}
PriZ > Z > =
Hence:
6—b(x+y)
Pr{Z >z+y|Z >y} = " — e
e

—— the past doesn’t impact the future!

CS 536 Park

Of course, not surprising since exponential distribution
essentially comes from independent coin tossing

—— independence over time is built in

Another interpretation/application:

—— view Z as session lifetime

... if a session has lasted for y seconds, can we predict if

it will last for another x seconds?
— no: it’s just e
—— knowing the past doesn’t help know the future

— not good for gambling

CS 536 Park

Important empirical fact: time between session arrivals
has been observed to be approximately exponentially dis-
tributed

— e.g., TCP sessions, Web (HTTP) requests

— refinements: additional burstiness (why?)

However, session lifetimes are not exponentially distributed!
— tend of have “heavier” tails
— exponential distribution: “light” tail

—— where have we seen heavier tails?

CS 536 Park

Lastly, let’s count:

—— with exponential interarrivals, how many arrivals?

count total arrivals: Poisson

A O N 1

exponential

— Poisson distribution

— 1z arrivals in unit time interval: e=“c"/x!
— c=1/b

— tail: Pr{X > 2} < e “(ec/x)"

— mean of Poisson distribution: ¢ (so x > ¢)
— very light

— large deviations (“outliers”) are rare

—— reincarnation of what?

CS 536 Park

Session- and Packet-Level Resource Provisioning

Viewpoint: treating packets individually is ok but ...
—— more meaningful: groups of packets
— “packet train”
— e.g., TCP sends window full packets

— e.g., in multimedia frame is relevant unit

Thus:

e packet train as “session” (micro-session)
— need to be careful about meaning of session
— session within session within session . . .

e one user engages in multiple sessions over time

— e.g., HTTP client/server request (HTTP runs on
top of TCP)

— persistent vs. non-persistent sessions: HT'TP /1.1 vs. 1.0

— TCP connection set-up/tear-down overhead

CS 536 Park

Ex.: on/off model
x@ | o | o [ov]ow| o o
X(0)]] 1
X0 |

X“’ﬁﬁ o

time

—— on-period: TCP file transfer

—— on-period length: file transfer completion time
— ignore internal details within on-period: sawtooth
—— on-period could be VoIP session: CBR

— not exactly: a user talks only 40% of the time
—— approximate view: ok by Amdahl’s law

— “don’t fret about small things”

CS 536

Park

We know session arrivals are (approximately) Poisson;

what about session lifetimes?

Important fact: TCP session lifetimes are heavy-tailed

—

—

Pr{Z >z} ~ 2™

as opposed to: Pr{Z > z} ~ e

exponent: 1 < a < 2 (closer to 1)

note: different from Internet connectivity power-law
much more likely session will last a long time

has finite mean but infinite variance

cat has a very fat tail (“too fat to carry”)

Why would TCP session lifetimes be heavy-tailed?

—

—

TCP traffic makes up bulk of Internet traffic

areater than 80%

CS 536 Park

Important fact: TCP session lifetimes are heavy-tailed
because file sizes are heavy-tailed!

— empirical fact from file server (incl. Web) studies
—— after all, TCP mostly transports files

—— write simple script to tabulate file sizes on arthur

Ex.: UNIX file system study (Gordon Irlam, 1993)

2.5e+06

File Count <—

2e+06 |

1.5e+06 |+

File Count

le+06

500000 ¢

0

I I
0 200000 400000 600000 800000 1le+06
File Size Range (bytes)

— most are small, but a few are very large

CS 536 Park

How to check if files sizes are heavy-tailed?

Since Pr{Z > x} ~ x7¢, take logarithm on both sides:
— logPr{Z >z} ~ —alogx

—— linear function with negative slope —a

" File Size Tail Distribution —+— |

Log-File Size Tail

1 1 1 1 1 1
0 1 2 3 4 5 6 7
Log-File Size (Bytes)

—— holds true for large x
—— what’s the slope a”

— we don’t care about details of small sizes (why?)

CS 536 Park

More details: how “large” is large and “small” is small

300000 T T T T 2.5e+06 2.5e+06

T T T T
File Count -— File Count -—

250000 - 2e+06 | 2e+06 |
200000
€ € 1.5e+06 [€ 1.5e+06 -
3 3 3
O 150000 ¢ o [¢]
Q@ Q@ Q@
ic L 1e+06 [L 1e+06
100000 |
50000 & 500000 500000 ¢
0 Il Il Il Il 0 Il Il Il Il Il Il Il 0 L Il Il Il
0 20 40 60 80 100 0 2000 4000 6000 8000 10000120001400016000 0 5e+08 1le+09 1.5e+09 2e+09 2.5e+09
File Size Range (bytes) File Size Range (bytes) File Size Range (bytes)

—— range: from 0 bytes to ~2 GB

— 90% of files are smaller than 10 KB
— mean around ~2 kB

— variation in small size range

— in some file systems: bimodal

Disk space consumed:
— 10% of files consume 90% of space
—— same for bandwidth

— “mice and elephants” metaphore

CS 536 Park

Consequences of heavy-tailed session lifetime:
—— for resource provisioning

—— as usual: good and bad

First, the good news!

— what might be good?

Ex.: popular heavy-tailed distribution: Pareto

kN @
Pr{Z > 1} = (—)
x
where
0 < a < 2: shape parameter;
k < x: location parameter

mean: F|Z| = ak/(a—1)

CS 536 Park

Good news: predictability

—— if session has lasted vy sec, will last for another x sec

Compute:
Pr{Z >z +y}
Pr{Z A =
H{Z >c+yl|Z >y} Pz
(k/(z +y))"

(kfy)™
- ()

Knowing the past allows predicting the future:

Pr{Z >z+y|Z>y} -1 as y— o
e by observing for longer period, can get more certainty
e average expected future duration:
— B{Z|Z >y} =ya/(a—1)
e find a casino with heavy-tailed roulette wheel

— 10 money worries!

