
CS 536 Park

Memoryless property:

• suppose time between session arrivals Z is exponen-

tially distributed

→ note: Pr{Z > y} =
∫ ∞

y be−btdt = e−by

• suppose a session has not arrived for y seconds

• what is the probability that a session will not arrive

for another x seconds?

→ i.e., Pr{Z > x + y |Z > y}?

By conditioning:

Pr{Z > x + y |Z > y} =
Pr{Z > x + y}

Pr{Z > y}

Hence:

Pr{Z > x + y |Z > y} =
e−b(x+y)

e−by
= e−bx

−→ the past doesn’t impact the future!



CS 536 Park

Of course, not surprising since exponential distribution

essentially comes from independent coin tossing

−→ independence over time is built in

Another interpretation/application:

−→ view Z as session lifetime

. . . if a session has lasted for y seconds, can we predict if

it will last for another x seconds?

−→ no: it’s just e−bx

−→ knowing the past doesn’t help know the future

−→ not good for gambling



CS 536 Park

Important empirical fact: time between session arrivals

has been observed to be approximately exponentially dis-

tributed

−→ e.g., TCP sessions, Web (HTTP) requests

−→ refinements: additional burstiness (why?)

However, session lifetimes are not exponentially distributed!

−→ tend of have “heavier” tails

−→ exponential distribution: “light” tail

−→ where have we seen heavier tails?



CS 536 Park

Lastly, let’s count:

−→ with exponential interarrivals, how many arrivals?

0 t
time

count total arrivals: Poisson

exponential

−→ Poisson distribution

−→ x arrivals in unit time interval: e−ccx/x!

−→ c = 1/b

−→ tail: Pr{X > x} < e−c(ec/x)x

−→ mean of Poisson distribution: c (so x > c)

−→ very light

−→ large deviations (“outliers”) are rare

−→ reincarnation of what?



CS 536 Park

Session- and Packet-Level Resource Provisioning

Viewpoint: treating packets individually is ok but . . .

−→ more meaningful: groups of packets

−→ “packet train”

−→ e.g., TCP sends window full packets

−→ e.g., in multimedia frame is relevant unit

Thus:

• packet train as “session” (micro-session)

→ need to be careful about meaning of session

→ session within session within session . . .

• one user engages in multiple sessions over time

→ e.g., HTTP client/server request (HTTP runs on

top of TCP)

→ persistent vs. non-persistent sessions: HTTP/1.1 vs. 1.0

→ TCP connection set-up/tear-down overhead



CS 536 Park

Ex.: on/off model

X (t)

time

ON ON ONOFF OFF OFFX (t)

3

1

X (t)2

X (t)

−→ on-period: TCP file transfer

−→ on-period length: file transfer completion time

−→ ignore internal details within on-period: sawtooth

−→ on-period could be VoIP session: CBR

−→ not exactly: a user talks only 40% of the time

−→ approximate view: ok by Amdahl’s law

−→ “don’t fret about small things”



CS 536 Park

We know session arrivals are (approximately) Poisson;

what about session lifetimes?

Important fact: TCP session lifetimes are heavy-tailed

−→ Pr{Z > x} ≈ x−α

−→ as opposed to: Pr{Z > x} ≈ e−bx

−→ exponent: 1 < α < 2 (closer to 1)

−→ note: different from Internet connectivity power-law

−→ much more likely session will last a long time

−→ has finite mean but infinite variance

−→ cat has a very fat tail (“too fat to carry”)

Why would TCP session lifetimes be heavy-tailed?

−→ TCP traffic makes up bulk of Internet traffic

−→ greater than 80%



CS 536 Park

Important fact: TCP session lifetimes are heavy-tailed

because file sizes are heavy-tailed!

−→ empirical fact from file server (incl. Web) studies

−→ after all, TCP mostly transports files

−→ write simple script to tabulate file sizes on arthur

Ex.: UNIX file system study (Gordon Irlam, 1993)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 200000 400000 600000 800000 1e+06

F
ile

 C
ou

nt

File Size Range (bytes)

File Count

−→ most are small, but a few are very large



CS 536 Park

How to check if files sizes are heavy-tailed?

Since Pr{Z > x} ≈ x−α, take logarithm on both sides:

−→ log Pr{Z > x} ≈ −α log x

−→ linear function with negative slope −α

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

Lo
g-

F
ile

 S
iz

e 
T

ai
l

Log-File Size (Bytes)

File Size Tail Distribution

−→ holds true for large x

−→ what’s the slope α?

−→ we don’t care about details of small sizes (why?)



CS 536 Park

More details: how “large” is large and “small” is small

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100

F
ile

 C
o
u
n
t

File Size Range (bytes)

File Count

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 2000 4000 6000 8000 10000120001400016000

F
ile

 C
o
u
n
t

File Size Range (bytes)

File Count

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

F
ile

 C
o
u
n
t

File Size Range (bytes)

File Count

−→ range: from 0 bytes to ∼2 GB

−→ 90% of files are smaller than 10 KB

−→ mean around ∼2 kB

−→ variation in small size range

−→ in some file systems: bimodal

Disk space consumed:

−→ 10% of files consume 90% of space

−→ same for bandwidth

−→ “mice and elephants” metaphore



CS 536 Park

Consequences of heavy-tailed session lifetime:

−→ for resource provisioning

−→ as usual: good and bad

First, the good news!

−→ what might be good?

Ex.: popular heavy-tailed distribution: Pareto

Pr{Z > x} =
(k

x

)α

where

0 < α < 2: shape parameter;

k ≤ x: location parameter

mean: E[Z] = αk/(α − 1)



CS 536 Park

Good news: predictability

−→ if session has lasted y sec, will last for another x sec

Compute:

Pr{Z > x + y |Z > y} =
Pr{Z > x + y}

Pr{Z > y}
=

(k/(x + y))α

(k/y)α

=

(
y

y + x

)α

Knowing the past allows predicting the future:

Pr{Z > x + y |Z > y} → 1 as y → ∞
• by observing for longer period, can get more certainty

• average expected future duration:

→ E{Z |Z > y} = yα/(α − 1)

• find a casino with heavy-tailed roulette wheel

→ no money worries!


