Memoryless property:

• suppose time between session arrivals Z is exponentially distributed

 \rightarrow note: $\Pr\{Z > y\} = \int_y^\infty b e^{-bt} dt = e^{-by}$

- suppose a session has not arrived for y seconds
- what is the probability that a session will not arrive for another x seconds?

 \rightarrow i.e., $\Pr\{Z > x + y \mid Z > y\}$?

By conditioning:

$$\Pr\{Z > x + y \mid Z > y\} = \frac{\Pr\{Z > x + y\}}{\Pr\{Z > y\}}$$

Hence:

$$\Pr\{Z > x + y \mid Z > y\} = \frac{e^{-b(x+y)}}{e^{-by}} = e^{-bx}$$

 \longrightarrow the past doesn't impact the future!

Of course, not surprising since exponential distribution essentially comes from independent coin tossing

 \longrightarrow independence over time is built in

Another interpretation/application:

 \longrightarrow view Z as session lifetime

... if a session has lasted for y seconds, can we predict if it will last for another x seconds?

- \longrightarrow no: it's just e^{-bx}
- \longrightarrow knowing the past doesn't help know the future
- \longrightarrow not good for gambling

Important empirical fact: time between session arrivals has been observed to be approximately exponentially distributed

- \longrightarrow e.g., TCP sessions, Web (HTTP) requests
- \longrightarrow refinements: additional burstiness (why?)

However, session lifetimes are not exponentially distributed!

- \longrightarrow tend of have "heavier" tails
- \longrightarrow exponential distribution: "light" tail
- \longrightarrow where have we seen heavier tails?

Lastly, let's count:

 \longrightarrow with exponential interarrivals, how many arrivals?

- \longrightarrow Poisson distribution
- $\longrightarrow x$ arrivals in unit time interval: $e^{-c}c^{x}/x!$
- $\longrightarrow c = 1/b$
- \longrightarrow tail: $\Pr\{X > x\} < e^{-c}(ec/x)^x$
- \longrightarrow mean of Poisson distribution: c (so x > c)
- \longrightarrow very light
- \longrightarrow large deviations ("outliers") are rare
- \longrightarrow reincarnation of what?

Session- and Packet-Level Resource Provisioning

Viewpoint: treating packets individually is ok but ...

- \longrightarrow more meaningful: groups of packets
- \longrightarrow "packet train"
- \longrightarrow e.g., TCP sends window full packets
- \longrightarrow e.g., in multimedia frame is relevant unit

Thus:

- packet train as "session" (micro-session)
 - \rightarrow need to be careful about meaning of session
 - \rightarrow session within session within session . . .
- one user engages in multiple sessions over time
 - \rightarrow e.g., HTTP client/server request (HTTP runs on top of TCP)
 - \rightarrow persistent vs. non-persistent sessions: HTTP/1.1 vs. 1.0
 - \rightarrow TCP connection set-up/tear-down overhead

- \longrightarrow on-period: TCP file transfer
- \longrightarrow on-period length: file transfer completion time
- \longrightarrow ignore internal details within on-period: sawtooth
- \longrightarrow on-period could be VoIP session: CBR
- \longrightarrow not exactly: a user talks only 40% of the time
- \longrightarrow approximate view: ok by Amdahl's law
- \longrightarrow "don't fret about small things"

We know session arrivals are (approximately) Poisson; what about session lifetimes?

Important fact: TCP session lifetimes are heavy-tailed

$$\longrightarrow \Pr\{Z > x\} \approx x^{-\alpha}$$

- \longrightarrow as opposed to: $\Pr\{Z > x\} \approx e^{-bx}$
- \longrightarrow exponent: $1 < \alpha < 2$ (closer to 1)
- \longrightarrow note: different from Internet connectivity power-law
- \longrightarrow much more likely session will last a long time
- \longrightarrow has finite mean but infinite variance
- \longrightarrow cat has a very fat tail ("too fat to carry")

Why would TCP session lifetimes be heavy-tailed?

- \longrightarrow TCP traffic makes up bulk of Internet traffic
- \longrightarrow greater than 80%

Important fact: TCP session lifetimes are heavy-tailed because file sizes are heavy-tailed!

- \longrightarrow empirical fact from file server (incl. Web) studies
- \longrightarrow after all, TCP mostly transports files
- \longrightarrow write simple script to tabulate file sizes on arthur
- Ex.: UNIX file system study (Gordon Irlam, 1993)

 \rightarrow most are small, but a few are very large

How to check if files sizes are heavy-tailed?

Since $\Pr\{Z > x\} \approx x^{-\alpha}$, take logarithm on both sides:

 $\longrightarrow \log \Pr\{Z > x\} \approx -\alpha \log x$

 \longrightarrow linear function with negative slope $-\alpha$

- \longrightarrow holds true for large x
- \longrightarrow what's the slope α ?
- \longrightarrow we don't care about details of small sizes (why?)

More details: how "large" is large and "small" is small

- \rightarrow range: from 0 bytes to $\sim 2 \text{ GB}$
- \longrightarrow 90% of files are smaller than 10 KB
- \longrightarrow mean around $\sim 2 \text{ kB}$
- \longrightarrow variation in small size range
- \rightarrow in some file systems: bimodal

Disk space consumed:

- \longrightarrow 10% of files consume 90% of space
- \longrightarrow same for bandwidth
- \longrightarrow "mice and elephants" metaphore

Consequences of heavy-tailed session lifetime:

 \longrightarrow for resource provisioning

 \longrightarrow as usual: good and bad

First, the good news!

 \longrightarrow what might be good?

Ex.: popular heavy-tailed distribution: Pareto $\Pr\{Z>x\} = \left(\frac{k}{x}\right)^{\alpha}$

where

 $0 < \alpha < 2$: shape parameter;

 $k \leq x$: location parameter mean: $E[Z] = \alpha k/(\alpha - 1)$ \longrightarrow if session has lasted y sec, will last for another x sec Compute:

$$\Pr\{Z > x + y \mid Z > y\} = \frac{\Pr\{Z > x + y\}}{\Pr\{Z > y\}}$$
$$= \frac{(k/(x + y))^{\alpha}}{(k/y)^{\alpha}}$$
$$= \left(\frac{y}{y + x}\right)^{\alpha}$$

Knowing the past allows predicting the future:

 $\Pr\{Z > x + y \mid Z > y\} \to 1 \text{ as } y \to \infty$

- by observing for longer period, can get more certainty
- average expected future duration:

 $\rightarrow E\{Z\,|\,Z>y\}=y\alpha/(\alpha-1)$

• find a casino with heavy-tailed roulette wheel \rightarrow no money worries!