RESOURCE PROVISIONING AND NETWORK TRAFFIC

Network engineering:

• Feedback traffic control
 → closed-loop control ("adaptive")
 → small time scale: msec
 → mainly by end systems
 → e.g., congestion control

• Resource provisioning
 → open-loop control ("in advance")
 → large time scale: seconds, minutes, and higher
 → mainly by service providers

Question: what do ISPs do to keep customers happy and make money (or lose less money)?
Resource provisioning: two main resources

- Bandwidth allocation
 → primary

- Buffer allocation
 → resource dimensioning: long-term
 → also called network planning: months, years
 → on-demand resource allocation: short-term
 → i.e., second, minutes, hours

Turns out:
 → same principles apply to both
 → take ISP’s viewpoint
 → granularity: user-, session-, and packet-level
User- and Session-Level Resource Provisioning

Basic set-up:

- aggregate demand at access switch
- \(n \) users or CPE (customer premises equipment)

Set-up applies to:
- Telephone switch: TDM slot per session/user
- Dial-up modem pool: e.g., AOL Internet access
- Broadband access service: e.g., IP address pool
Basic building block: access switch

→ function: aggregation

→ performance benefit?

→ old banking trick: keep fraction of total deposit

→ observation: not all customers withdraw at once (?)

Networking: not all customers access network at once

→ affords efficiency & economy

• can keep fewer T1 lines

• can keep smaller modem pool

• can keep fewer IP addresses

• can keep less bandwidth

Note: a calculated risk

→ sometimes very many users connect at once

→ access denied: blocking
In what other major sector is “old banking trick” employed?

What makes old banking trick possible?

\[\rightarrow \quad \text{one of the few “laws of engineering”} \]

Law of large numbers (LLN): the sum of many independent random variables concentrates around the mean

\[\rightarrow \quad \text{i.e., very few outliers} \]

\[\rightarrow \quad \text{also, typically, mean} \ll \text{maximum} \]

Ex.: Suppose there are \(n \) users subscribing to Verizon in West Lafayette.

\[\rightarrow \quad \text{how many users will make a call at time} \ t? \]
Assuming:

- $X_i(t) = 0$ if no call by user i at t, 1 if call
- $\Pr\{X_i(t) = 1\} = p$
- users make calling decisions independent of each other
 → i.e., $X_1(t), X_2(t), \ldots, X_n(t)$ are i.i.d.
 → note: same as coin tossing
- total calls at time t
 → $S_n(t) = X_1(t) + X_2(t) + \cdots + X_n(t)$
- average number of calls
 → $E[S_n(t)] = E[X_1(t)] + \cdots + E[X_n(t)] = np$
 → hence, $E[S_n(t)/n] = p$
 → independence needed?
- LLN: $\Pr\{|\frac{S_n(t)}{n} - p| > \varepsilon\} \to 0$ as $n \to \infty$ for any $\varepsilon > 0$
 → weak LLN
 → strong LLN?
Thus, for sufficiently large n deviation from the mean is rare.

\[\rightarrow \text{Verizon can expect } np \text{ calls at time } t \]
\[\rightarrow \text{with large } n, \text{ very close to } np \text{ calls} \]
\[\rightarrow \text{but, how large is “large”?} \]
\[\rightarrow \text{does WL have sufficiently many customers?} \]

To be useful for engineering, we need to know more

\[\rightarrow \text{rate of convergence} \]

Large deviation bound:

\[\rightarrow \Pr\{|\frac{S_n(t)}{n} - p| > \varepsilon\} < e^{-an} \]
\[\rightarrow \text{constant } a \text{ depends on } \varepsilon \]
\[\rightarrow \text{exponential decrease in } n \]
\[\rightarrow \text{also, holds for all } n \]
\[\rightarrow \text{engineering: blocking probability} \]
Large deviation bound gives simple prescription for resource provisioning:

- measure p (historical data); ISP knows n
- determine acceptable blocking probability δ
 - e.g., $\delta = 0.00001$
 - i.e., one in 10000 calls gets blocked
- find ε such that
 \[
 \Pr\{|\frac{S_n(t)}{n} - p| > \varepsilon\} = \Pr\{|S_n(t) - np| > n\varepsilon\} < e^{-an} = \delta
 \]
 - note: ε determines excess capacity allocated
 - recall: a depends on ε (called rate function)
 - one of the main tools used by ISPs/telcos

From ISP’s perspective, is this enough for making resource provisioning decision?

---- what crucial element may be missing?
Connection lifetime or duration

→ also called call holding time
→ for how long a resource (e.g., modem) is busy
→ if fixed, then previous formula holds
→ user session property
→ in general: connection lifetime is variable
→ e.g., average telephone call: 7 minutes

Let \(L \) denote connection lifetime (assuming i.i.d. across all users)

→ by measurement, ISP knows its distribution
→ consider average lifetime \(E[L] \)
→ consider two time instances \(t \) and \(t + E[L] \)
→ what to do?
View system in terms of time granularity $E[L]$:

- use large deviation formula to estimate connection arrivals during time window $[t, t + E[L])$
 \[\rightarrow \text{excess capacity } n\varepsilon \text{ above and beyond mean } np \]

- use distribution of L to estimate $\Pr\{L > E[L]\}$
 \[\rightarrow \text{may refine } \varepsilon \text{ to } \varepsilon' \ (\varepsilon < \varepsilon') \]
 \[\rightarrow \text{for } E[L] \text{ not-too-small may not be needed (why?)} \]
Remarks:

- LLN: principal engineering tool used by large transit providers and large access providers
 → “largeness” is key
 → even though components are random, system is well-behaved and predictable
 → apply at ingress/egress and backbone links
 → measurement-based tool: traffic matrix
• sometimes can apply central limit theorem (CLT): aggregate has Gaussian (normal) distribution
 \(\rightarrow \) in practice: not very useful
 \(\rightarrow \) e.g., tail of Gaussian: not very accurate
 \(\rightarrow \) deviation estimate valid only for moderate \(\varepsilon \)
 \(\rightarrow \) may not even look Gaussian!
 \(\rightarrow \) needs very large \(n \)
 \(\rightarrow \) large deviation bound: holds for all \(n \)

• aggregation over time window \([t, t + E[L]] \)
 \(\rightarrow \) a single user can have 2 or more sessions
 \(\rightarrow \) may violate independence assumption (across users)
 \(\rightarrow \) independence over time: separate matter
we assumed discrete number of resources

→ e.g., 10000 modems, 50000 IP addresses, 1000 T1 lines, etc.

→ valid viewpoint at user/session granularity

→ also applies to packet granularity

→ as long as independence over time holds

How does session arrival for a single user over time look like?

→ aggregation over time

→ resource provisioning: buffering

→ vs. aggregation over users (bandwidth)
Session arrivals over time:

- apply coin tossing idea over time
- before: one coin per user
- now: one user has multiple coins
 → coins are assumed to be i.i.d. with probability p
 → apply LLN over time!
Over discrete time window $[1, m]$, same bounds apply; for user i:

$$
\rightarrow S_i(m) = X_i(1) + X_i(2) + \cdots + X_i(m)
$$

$$
\rightarrow Pr\{|\frac{S_i(m)}{m} - p| > \varepsilon\} < e^{-am}
$$

Thus: if we have $mp + m\varepsilon$ resources (e.g., buffer), then can buffer user i’s service requests (could be even packets) over time $[1, m]$ without “loss”

$$
\rightarrow \text{loss probability} < e^{-am}
$$

$$
\rightarrow \text{before: blocking probability}
$$

$$
\rightarrow \text{in practice: } m \text{ can’t be too high}
$$

$$
\rightarrow \text{buffering } \Rightarrow \text{ delay penalty}
$$

$$
\rightarrow \text{some applications require quick response time}
$$
One refinement: what does the time spacing between successive arrivals look like?

\[\rightarrow \text{prob. session will arrive after } k \text{ steps: } (1 - p)^k p \]

\[\rightarrow \text{called geometric distribution (where did we see it?)} \]

\[\rightarrow \text{most important: exponentially decreasing in } k \]

Corresponding distribution in continuous time:

\[\rightarrow be^{-bt} (t \text{ in place of } k) \]

\[\rightarrow \text{exponential distribution} \]

\[\rightarrow \text{essentially equivalent to geometric distribution} \]

\[\rightarrow \text{important property: memoryless} \]