Resource Provisioning and Network Traffic

Network engineering:

- Feedback traffic control
 - \rightarrow closed-loop control ("adaptive")
 - \rightarrow small time scale: msec
 - \rightarrow mainly by end systems
 - \rightarrow e.g., congestion control
- Resource provisioning
 - \rightarrow open-loop control ("in advance")
 - \rightarrow large time scale: seconds, minutes, and higher
 - \rightarrow mainly by service providers

Question: what do ISPs do to keep customers happy and make money (or lose less money)?

Resource provisioning: two main resources

• Bandwidth allocation

 \rightarrow primary

- Buffer allocation
 - \longrightarrow resource dimensioning: long-term
 - \longrightarrow also called network planning: months, years
 - \longrightarrow on-demand resource allocation: short-term
 - \longrightarrow i.e., second, minutes, hours

Turns out:

- \longrightarrow same principles apply to both
- \longrightarrow take ISP's viewpoint
- \longrightarrow granularity: user-, session-, and packet-level

User- and Session-Level Resource Provisioning

Basic set-up:

- \longrightarrow aggregate demand at access switch
- $\rightarrow n$ users or CPE (customer premises equipment)

Set-up applies to:

- Telephone switch: TDM slot per session/user
- Dial-up modem pool: e.g., AOL Internet access
- Broadband access service: e.g., IP address pool

Basic building block: access switch

- \longrightarrow function: aggregation
- \longrightarrow performance benefit?
- \longrightarrow old banking trick: keep fraction of total deposit
- \longrightarrow observation: not all customers withdraw at once (?)

Networking: not all customers access network at once

 \longrightarrow affords efficiency & economy

- can keep fewer T1 lines
- can keep smaller modem pool
- can keep fewer IP addresses
- can keep less bandwidth

Note: a calculated risk

- \longrightarrow sometimes very many users connect at once
- \longrightarrow access denied: blocking

In what other major sector is "old banking trick" employed?

What makes old banking trick possible?

 \longrightarrow one of the few "laws of engineering"

Law of large numbers (LLN): the sum of many independent random variables concentrates around the mean

 \longrightarrow i.e., very few outliers

 \longrightarrow also, typically, mean \ll maximum

Ex.: Suppose there are n users subscribing to Verizon in West Lafayette.

 \longrightarrow how many users will make a call at time t?

Assuming:

• $X_i(t) = 0$ if no call by user *i* at *t*, 1 if call

•
$$\Pr\{X_i(t) = 1\} = p$$

• users make calling decisions independent of each other

$$\rightarrow$$
 i.e., $X_1(t), X_2(t), \ldots, X_n(t)$ are i.i.d.

- \rightarrow note: same as coin tossing
- \bullet total calls at time t

$$\rightarrow S_n(t) = X_1(t) + X_2(t) + \dots + X_n(t)$$

• average number of calls

$$\rightarrow E[S_n(t)] = E[X_1(t)] + \dots + E[X_n(t)] = np$$

$$\rightarrow$$
 hence, $E[S_n(t)/n] = p$

 \rightarrow independence needed?

• LLN:
$$\Pr\{\left|\frac{S_n(t)}{n} - p\right| > \varepsilon\} \to 0 \text{ as } n \to \infty \text{ for any } \varepsilon > 0$$

 $\to \text{ weak LLN}$

 \rightarrow strong LLN?

Park

Thus, for sufficiently large n deviation from the mean is rare.

- \longrightarrow Verizon can expect np calls at time t
- \longrightarrow with large *n*, very close to *np* calls
- \longrightarrow but, how large is "large"?
- \longrightarrow does WL have sufficiently many customers?

To be useful for engineering, we need to know more

 \longrightarrow rate of convergence

Large deviation bound:

- $\longrightarrow \Pr\{\left|\frac{S_n(t)}{n} p\right| > \varepsilon\} < e^{-an}$
- \longrightarrow constant *a* depends on ε
- \longrightarrow exponential decrease in n
- \longrightarrow also, holds for all n
- \longrightarrow engineering: blocking probability

Large deviation bound gives simple prescription for resource provisioning:

- measure p (historical data); ISP knows n
- \bullet determine acceptable blocking probability δ

$$\rightarrow$$
 e.g., $\delta = 0.00001$

 \rightarrow i.e., one in 10000 calls gets blocked

• find
$$\varepsilon$$
 such that
 $\Pr\{|\frac{S_n(t)}{n} - p| > \varepsilon\} = \Pr\{|S_n(t) - np| > n\varepsilon\}$
 $< e^{-an} = \delta$

 \rightarrow note: ε determines excess capacity allocated

- \rightarrow recall: *a* depends on ε (called rate function)
- \rightarrow one of the main tools used by ISPs/telcos

From ISP's perspective, is this enough for making resource provisioning decision?

 \longrightarrow what crucial element may be missing?

Connection lifetime or duration

- \longrightarrow also called call holding time
- \longrightarrow for how long a resource (e.g., modem) is busy
- \longrightarrow if fixed, then previous formula holds
- \longrightarrow user session property
- \longrightarrow in general: connection lifetime is variable
- \longrightarrow e.g., average telephone call: 7 minutes

Let L denote connection lifetime (assuming i.i.d. across all users)

- \longrightarrow by measurement, ISP knows its distribution
- \longrightarrow consider average lifetime E[L]
- \longrightarrow consider two time instances t and t + E[L]
- \longrightarrow what to do?

View system in terms of time granularity E[L]:

- use large deviation formula to estimate connection arrivals during time window [t, t + E[L])
 - \rightarrow excess capacity $n\varepsilon$ above and beyond mean np
- use distribution of L to estimate $\Pr\{L > E[L]\}$
 - \rightarrow may refine ε to ε' ($\varepsilon < \varepsilon'$)
 - \rightarrow for E[L] not-too-small may not be needed (why?)

Remarks:

- LLN: principal engineering tool used by large transit providers and large access providers
 - \rightarrow "largeness" is key
 - \rightarrow even though components are random, system is well-behaved and predictable
 - \rightarrow apply at ingress/egress and backbone links
 - \rightarrow measurement-based tool: traffic matrix

- sometimes can apply central limit theorem (CLT): aggregate has Gaussian (normal) distribution
 - \rightarrow in practice: not very useful
 - \rightarrow e.g., tail of Gaussian: not very accurate
 - \rightarrow deviation estimate valid only for moderate ε
 - \rightarrow may not even look Gaussian!
 - \rightarrow needs very large n
 - \rightarrow large deviation bound: holds for all n
- aggregation over time window [t, t + E[L])
 - \rightarrow a single user can have 2 or more sessions
 - \rightarrow may violate independence assumption (across users)
 - \rightarrow independence over time: separate matter

- we assumed discrete number of resources
 - \rightarrow e.g., 10000 modems, 50000 IP addresses, 1000 T1 lines, etc.
 - \rightarrow valid viewpoint at user/session granularity
 - \rightarrow also applies to packet granularity
 - \rightarrow as long as independence over time holds

How does session arrival for a single user over time look like?

- \longrightarrow aggregation over time
- \longrightarrow resource provisioning: buffering
- \longrightarrow vs. aggregation over users (bandwidth)

- apply coin tossing idea over time
- before: one coin per user
- now: one user has multiple coins

 \rightarrow coins are assumed to be i.i.d. with probability p

 \rightarrow apply LLN over time!

LLN over users

LLN over time

Over discrete time window [1, m], same bounds apply; for user *i*:

$$\longrightarrow \mathcal{S}_i(m) = X_i(1) + X_i(2) + \dots + X_i(m)$$
$$\longrightarrow \Pr\{|\frac{\mathcal{S}_i(m)}{m} - p| > \varepsilon\} < e^{-am}$$

Thus: if we have $mp + m\varepsilon$ resources (e.g., buffer), then can buffer user *i*'s service requests (could be even packets) over time [1, m] without "loss"

- \longrightarrow loss probability $< e^{-am}$
- \longrightarrow before: blocking probability
- \longrightarrow in practice: m can't be too high
- \longrightarrow buffering \Rightarrow delay penalty
- \longrightarrow some applications require quick response time

One refinement: what does the time spacing between successive arrivals look like?

- \longrightarrow prob. session will arrive after k steps: $(1-p)^k p$
- \longrightarrow called geometric distribution (where did we see it?)
- \longrightarrow most important: exponentially decreasing in k

Corresponding distribution in continuous time:

- $\longrightarrow be^{-bt}$ (t in place of k)
- \longrightarrow exponential distribution
- \longrightarrow essentially equivalent to geometric distribution
- \longrightarrow important property: memoryless