CSMA/CD Throughput

 \longrightarrow approximate analysis in simplified setting

Assumptions:

- time is slotted
 - \rightarrow slot duration: 2τ
- k hosts; each host transmits with probability p at every slot
 - \rightarrow transmission behavior among hosts independent
 - \rightarrow transmission behavior across slots independent

Note:

- independence among users: typical assumption
- independence across time: strong assumption

 \longrightarrow modify future behavior depending on present/past

That is:

 \rightarrow upon collision more to send in the future: $p\uparrow$

 \rightarrow upon backoff: $p\downarrow$

 \rightarrow more general: backlog

We will consider fixed, independent p

 \rightarrow no backlogs

 \rightarrow no feedback adapation of p

New performance metric: utilization (ϱ)

- \longrightarrow fraction of total bandwidth attained
- $\longrightarrow 0 \le \varrho \le 1$
- \longrightarrow captures efficiency and wastage

In slotted CSMA/CD:

- \longrightarrow fraction of usefully used slots
- \longrightarrow what are "uselessly used" slots?

Ex.: snapshot of baseband channel over 10 time slots

- \rightarrow blue: successfully transmitted frames
- \rightarrow brown: collided frames
- \rightarrow utilization ϱ ?

One more viewpoint:

 \longrightarrow note: useful and useless "periods" alternate

In the long run,

$$\varrho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$

 \rightarrow avrg. length of adjacent "good" and "bad" periods \rightarrow formula holds under mild conditions

Next: calculate E[good] and E[bad]

Fix time slot. Probability that a fixed host acquires the slot successfully

$$p(1-p)^{k-1}$$

Probability that some host acquires the slot

$$\eta = kp(1-p)^{k-1}$$

 \longrightarrow why?

Now, let's be generous and find p that maximizes η \longrightarrow upper bounding

Fact: η is maximized at p = 1/k. Also,

$$\lim_{k \to \infty} \eta = \lim_{k \to \infty} \left(1 - \frac{1}{k} \right)^{k-1} = 1/e.$$

 \rightarrow many user assumption

 \longrightarrow common practice to simplify expression (valid?)

Probability bad period persists for exactly i slots $(1-\eta)^{i-1}\eta$

Thefore average bad period

$$E[\text{bad}] = \sum_{i=0}^{\infty} i(1-\eta)^{i-1}\eta = 1/\eta$$

E[bad] is in unit of slots. Convert to second:

$$2\tau/\eta = 2\tau e$$

Similarly calculate E[good]; call it γ .

Convert γ to second:

 $\gamma F/B$

where

F: frame size (bits)

B: bandwidth (bps)

Putting everything together

$$\varrho = \frac{E[\text{good}]}{E[\text{good}] + E[\text{bad}]}$$
$$= \frac{\gamma F/B}{\gamma F/B + 2\tau e}$$
$$= \frac{\gamma F/B}{\gamma F/B + 2Le/c}$$
$$= \frac{1}{1 + (2e/c\gamma)BL/F}$$

where

L: length of wire (meters)c: speed of light (m/s)

What does the formula say?

For example, if B is increased, what must be done to maintain high utilization?

Note: BL/F comes into play during unit conversion from slots to seconds

- \longrightarrow holds for different E[good] and E[bad]
- \longrightarrow invariant

Recall: to minimize probability of collision we set

$$p = 1/k$$

- \longrightarrow *p*-persistent version of CSMA/CD
- \longrightarrow depends on knowledge of number of users
- \longrightarrow today's Ethernet: 1-persistent

For fixed p, as a function of k CSMA/CD throughput is unimodal, i.e., dome-shaped

 \longrightarrow under excessive load, throughput goes down

In practice today: switched Ethernet

- contention moved from bus to "single point"
 - \rightarrow switch: star topology
 - \rightarrow analogous to old telephone switch-boards
- Ethernet frames are logically scheduled
 - \rightarrow includes buffering

Diagram of output-buffered switch:

 \longrightarrow interconnection networks (e.g., shuffle-exchange) \longrightarrow switching fabric: hardware

- Ethernet switch emulates CSMA/CD
 - \rightarrow backward compatibility
 - \rightarrow use same frame format
- upon buffer overflow: send collision signal
 - \rightarrow transparent to legacy host NIC
 - \rightarrow awkward: instituted for incremental deployment
 - \rightarrow Internet: new technology must respect legacy
- Ex.: 10Base-T, 100Base-T, 1000Base-T and 1000Base-X
 - \longrightarrow FE: 802.3u; GigE: 802.3ab and 802.3z
 - \longrightarrow negotiation: e.g., full/half duplex
 - \longrightarrow how can GigE overcome length limitation?
 - \longrightarrow e.g., supports 200 m as in FE

Slot time extension:

- frame format remains the same
- \bullet minimum slot time extended from 64 B to 512 B
 - \rightarrow padding: transparent to legacy CSMA/CA
 - \rightarrow also called carrier extension
 - \rightarrow reconciliation sublayer between MAC and PHY

Packet bursting:

- \bullet slot time extension alone problematic
 - \rightarrow small frames: marginal increase in throughput
- allow burst of packets
 - \rightarrow only first packet is padded & burst limit

Longer distances?

 \longrightarrow e.g., 1000Base-LX

Medium-haul GigE/10GigE (802.3ae): 500m, 5km, 40km

- CSMA/CD disabled
 - \rightarrow purely point-to-point link
 - \rightarrow switch-to-switch
 - \rightarrow simpler
 - \rightarrow backward compatibility: not an issue
- flow control
 - \rightarrow pause frame to prevent buffer overflow

QoS: 802.3p

- \longrightarrow frame tagging conveys priority
- \longrightarrow priority classes supported at switches

 \longrightarrow token ring architecture

High-bandwidth extension of IBM 4 Mbps token ring and 16 Mbps IEEE 802.5 token ring standard.

 \rightarrow 100 Mbps bandwidth

Used as high-bandwidth campus/city backbone.

 \longrightarrow metropolitan/campus distance: MAN

Basic operation:

Fault-tolerance:

- DAS (dual attachment station)
- SAS (single attachment station)

- frame size < 4500 B
- 4B/5B encoding
- synchronous/asynchronous data
- 2 km inter-station distance
- 200 km diameter (multimode fiber); 100 km circumference

Performance issues: fairness and efficiency

- TRT (token rotation time)
- THT (token holding time)

 $TRT = no. of nodes \times THT + link latency$

To increase efficiency: increase THT

- \longrightarrow let station send as much as it needs
- \longrightarrow same as frame size \uparrow
- \longrightarrow THT $\uparrow \implies \rho \uparrow$

To increase fairness: limit THT

 \longrightarrow limit station's one-time sending of data

To facilitate fairness: introduce TTRT (target token rotation time).

THT determining factor (assume TTRT is given):

- prioritized frames: synchronous/asynchronous
- Synchronous frames always get sent.
- If TRT > TTRT, then late; don't send asynchronous data.
- If TRT ≤ TTRT, then early; send asynchronous data for max { TTRT − TRT, single frame time } duration.

How to set TTRT?

- \longrightarrow token claim process
- \longrightarrow initiate when needed (e.g., start-up)
- Each station submits claim frame containing TTRT bid.
- Smaller TTRT bid overrides higher TTRT bids.
 - Compare claim frame bid against own desired TTRT.
 - If less, then reset own TTRT to lower value.
 - If larger, then put lower bid on claim frame and forward.
- Winner: same bid value when claim frame makes full circle.

 \longrightarrow leader election

At the end of the day, consistent TTRT value among all stations.

 \longrightarrow consensus problem

Compare against Ethernet's CSMA/CD.

- \longrightarrow round-robin reservation
- \longrightarrow absence of MA and collision
- \longrightarrow determinism vs. indeterminism
- \longrightarrow imperfect QoS assurance
- \longrightarrow performance vis-à-vis CSMA/CD?

Cooperative vs. noncooperative protocols

- \longrightarrow robust if some users use selfish MAC
- \longrightarrow could be malicious