Error Detection and Correction

Recall: reliable transmission over noisy channel

Key problem:
- Sender wishes to send a; transmits code word w_a
- Receiver receives w
- Due to noise, w may, or may not, be equal to w_a

→ Would like to detect error has occurred
→ Would like to correct error
Error detection problem:

• determine if \(w \) is a valid code word
 \[\rightarrow \text{i.e., for some symbol } c \in \Sigma, \quad F(c) = w \]
• e.g., parity bit in ASCII transmission
 \[\rightarrow \text{odd or even parity} \]
 \[\rightarrow \text{limitation?} \]

Error correction problem:

• even if \(w \neq w_a \), recover symbol \(a \) from scrambled \(w \)
 \[\rightarrow \text{correction is tougher than detection} \]
• how to correct single errors for ASCII transmission?
 \[\rightarrow \text{e.g., assume 21 bits available} \]
 \[\rightarrow \text{what about 14 bits?} \]
Conceptual approach to detection & correction:

Error detection:

- valid/legal code word set $S = \{w_a : a \in \Sigma\}$
- can detect k-bit errors if
 - corrupted w does not belong to S
 - for all k-bit error patterns
 - flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?

- e.g., ASCII with 1-bit, 2-bit, ..., k-bit flips
- intuition?
Key idea:

\[\rightarrow \text{valid code words should not look alike} \]
\[\rightarrow \text{well-separatedness} \]
\[\rightarrow \text{“distance” between two binary strings?} \]

Error correction:

- suppose \(w_a \) has turned into \(w \) under \(k \)-bit errors
- for all \(b \in \Sigma \), calculate \(d(w_b, w) \)
 \[\rightarrow \text{use Hamming distance} \]
 \[\rightarrow \text{e.g.,} \ d(1011, 1101) = 2 \]
- pick \(c \in \Sigma \) with smallest \(d(w_c, w) \) as answer
Ex.: 0 \leftrightarrow 000 and 1 \leftrightarrow 111

\rightarrow want to send 0, hence send 000

\rightarrow 010 arrives: $d(010, 000) = 1$ & $d(010, 111) = 2$

\rightarrow conclude 000 was corrupted into 010

\rightarrow original data bit: 0

Obviously not fool-proof . . .

\rightarrow the larger k, the more distant the code words

\rightarrow need a roomier playing area

\rightarrow imbed valid/legal code words
Pictorially: “ball” of radius r centered at w_a

\[B_r(w_a) = \{ w : d(w_a, w) \leq r \} \]

\rightarrow \text{well-separated code word set S layout}

If k bit flips, sufficient conditions for error detection and correction in terms of $d(w_a, w_b)$ for all $a, b \in \Sigma$?
Network protocol context: different approach to detection vs. correction

→ error detection: use checksum and CRC codes
→ error correction: use retransmission
→ humans?
→ can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; calculate their sum in one’s complement; append “checksum” to message.

→ problem?
Cyclic redundancy check (CRC): polynomial arithmetic over finite field.

View n-bit string $a_{n-1}a_{n-2} \cdots a_0$ as a polynomial of degree $n - 1$:

$$M(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0.$$

Ex.: 1011 is interpreted as

$$1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x^1 + 1 \cdot x^0 = x^3 + x + 1$$

$\rightarrow M(x)$: data or message to be sent

Some facts about polynomial arithmetic:

- how do we add/subtract polynomials
 \rightarrow component-wise addition/subtraction
 \rightarrow “mod 2” when binary coefficients

- how do we multiply/divide polynomials?
Goal: detect multiple bit flips

Set-up: fix some generator polynomial $G(x)$ of degree k.

\rightarrow $G(x)$ “generates” (i.e., divides) code words

\rightarrow like prime number

\rightarrow choice of $G(x)$ important

Encode: Two steps

1. Let $R(x)$ be the remainder of $x^kM(x)/G(x)$.

 \rightarrow note: $x^kM(x)$ is k-bit left shift operation

 \rightarrow like adding redundancy (k extra bits)

 \rightarrow total length: $n + k$

 \rightarrow e.g., Ethernet

2. Set $T(x) = x^kM(x) - R(x)$.

 \rightarrow $T(x)$ is the code word

 \rightarrow why subtract $R(x)$?
Transmit: $T(x)$

Noise:

$\quad \rightarrow T(x) + E(x)$ arrives at receiver
$\quad \rightarrow E(x)$ represents the bit flips
$\quad \rightarrow$ degree of $E(x)$?
$\quad \rightarrow M(x) = a, T(x) = w_a, T(x) + E(x) = w$

Decode: i.e., detect bit flip

- if $E(x) = 0$ then $(T(x) + E(x))/G(x)$: remainder $= 0$
 \rightarrow no errors
- if $E(x) \neq 0$ then $(T(x) + E(x))/G(x)$: remainder $\neq 0$
 \rightarrow error has occurred

Is the decision rule sufficient?
Choice of $G(x)$ depends on allowed noise vector (i.e., polynomial) $E(x)$

Single bit flip:
 - we have $E(x) = x^i$, $0 \leq i \leq n + k - 1$ (i.e., a single error at position i)
 - if $G(x)$ contains at least two terms, $G(x)$ will not divide $E(x)$: $G(x) = x^k + 1$

Two bit flips:
 - $E(x) = x^i + x^j$ ($i > j$)
 \[\rightarrow \text{write } E(x) = x^j(x^{i-j} + 1) \]
 - assuming x does not divide $G(x)$, it is sufficient that $G(x)$ not divide $x^{i-j} + 1$
 - fact: $G(x) = x^{15} + x^{14} + 1$ will not divide $x^r + 1$ for $r < 32768$
 \[\rightarrow \text{pretty long messages: meaning of } r? \]
Burst (i.e., consecutive) errors

→ additional analysis

Ex.: commonly used CRC generator polynomials

• CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

→ e.g., FDDI, Ethernet, WLAN

→ also used in compression

• CRC-CCITT: $x^{16} + x^{12} + x^5 + 1$ (HDLC)

• CRC-8: $x^8 + x^2 + x + 1$ (ATM)

→ guaranteed: single, double, k-burst errors

→ typically: other error patterns