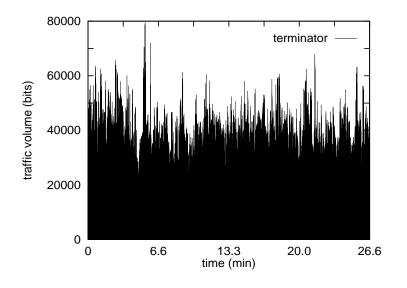
What is traveling on the wires?

Mixed data:


bulk data, audio/voice, video/image, real-time interactive data, etc.

- $\longrightarrow~>85\%$ of Internet traffic is bulk TCP traffic
- \longrightarrow due to Web and http
- \longrightarrow barriers to streaming traffic implosion
- \longrightarrow technical and other

Tilting toward *multimedia* data; i.e., traffic with QoS requirements including real-time constraints.

Internet traffic is bursty:

 \rightarrow multimedia: MPEG compressed video



Why?

 \bullet pattern of scene changes in movies

 \rightarrow within a scene few changes

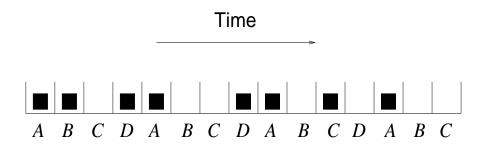
- across scenes, significant "scenary" changes
 - \rightarrow "director's eye"
- video compression
 - \rightarrow utilize inter-frame compression

Why?

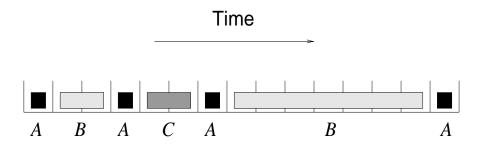
- \bullet bulk data: 80/20 rule-of-thumb
- majority of files are small, a few very large
 - \rightarrow disproportionate contribution to total traffic
 - \rightarrow "elephants and mice"

Usage pattern in the real-world: uneven or "unfair"

Given mixed payload:

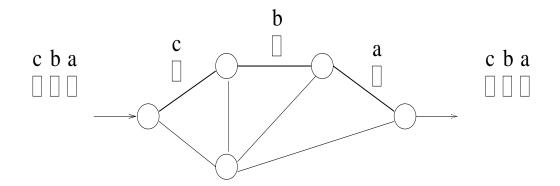

Data networks capable of carrying diverse payload on the same network is a recent phenomenon.

Even today, much of voice traffic (telephony) is carried on an entirely separate communication network vis-àvis data traffic, operating under different internetworking principles from the latter.


- \longrightarrow time-division multiplexing (TDM) for telephony
- \longrightarrow packet switching for data networks

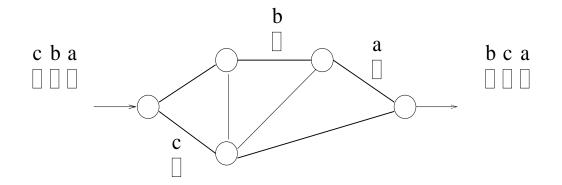
How is time—viewed as a resource—shared?

Time-division multiplexing:



Packet switching:

How is "real estate" shared?

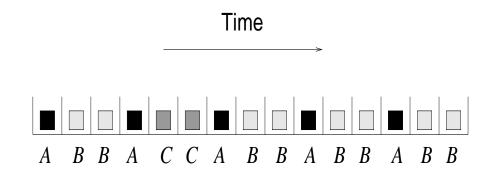

Circuit switching: Virtual channel is established and followed during the lifetime of an end-to-end connection.

- \longrightarrow static route
- \longrightarrow in-order delivery
- \longrightarrow small routing table

Telephone networks (and ATM networks).

Packet switching: Every packet belonging to an endto-end conversation is an independent entity; may take a different route from other packets in the same connection.

- \longrightarrow dynamic route
- \longrightarrow out-of-order delivery
- \longrightarrow larger route table


Trade-off between processing overhead and route goodness Trend: convergence to packet-switched technology

- \longrightarrow layer 2 switching in the backbone: VC
- \longrightarrow move away from IP due to overhead
- \longrightarrow IP critical at peering points

Yet another drawback of packet switching:

- \longrightarrow "bully phenomenon"
- \longrightarrow video: 24 frames-per-second (f/s)
- \longrightarrow voice: 8000 samples-per-second (s/s)
- \longrightarrow what to do?

 $A synchronous \ transfer \ mode \ (ATM) \ :$

 \longrightarrow 53 byte packet or *cell*.

Synergy of all forms of data, audio, video, bulk, etc. One unified network with "integrated" services.

Addresses bully problem but ...

- \longrightarrow significant overhead (48 + 5)
- \longrightarrow why 48 bytes?

- \longrightarrow performs its own routing (VC based)
- \longrightarrow function duplication
- \longrightarrow very complex (overloaded with features)
- \longrightarrow feature \neq "how to"

Much has migrated to new layer 2 switching technology

- \longrightarrow MPLS (multiprotocol label switching)
- \longrightarrow ATM community reincarnated as MPLS . . .
- \longrightarrow after shrinkage
- \longrightarrow supporting role to IP

In the meantime, at routers receiving mixed payload ...

Try to avoid packet loss, but no loss comes at a cost:

- fast memory (buffer) is not cheap
- management overhead: ASIC vs. software vs. hybrid
- packets have to wait in line for their turn
 - \rightarrow queueing delay
 - \rightarrow who gets preference?

Depends on scheduling.

- FIFO (first-in-first-out)
- priority queue
- round robin + weighted fair queue
 - \rightarrow use TOS field of IPv4 to encode priority
- \bullet reservation
 - \rightarrow software-based "line leasing"

Is adding more and more buffer space a good solution?

- \longrightarrow no: related to "elephants and mice"
- \longrightarrow bandwidth is preferred (and, presently, cheaper)

When is it outright bad?

 $\longrightarrow\,$ real-time multimedia payload