Key Issues

Fault-tolerance

- The larger the network, the more things can go wrong.
- E.g.: link/node failures, message corruption, software bugs
- \longrightarrow managing downtime: tier-1 providers
- \longrightarrow 99.999%

Two types of failures:

- \bullet independent
- correlated

In a network system with n components, assume a component fails with independent probability p

 \longrightarrow expected number of failures: $n \cdot p$

$$\longrightarrow$$
 probability of no failures: $(1-p)^n$

 \longrightarrow probability of k simulaneous failures: p^k

Thus correlated failures have miniscule probability.

 \longrightarrow exponentially small in k

In reality, failures are not independent.

 \longrightarrow e.g., power outage, natural disasters

We have:

 \longrightarrow Murphy's Law

- issue of reliable communication
- reliable network services
 - \rightarrow main principle: redundancy
- Examples:
 - routing of messages: alternate/back-up routes
 - domain name servers: duplication
 - transmission by space probes: forward error correction (FEC)
 - \rightarrow also used for multimedia traffic

Network security

Features:

- confidentiality: encryption
- integrity: message has not been tampered
- authentication: sender really is who she claims to be
 - \longrightarrow "CIA"
 - \longrightarrow foundation: cryptography
 - \longrightarrow end-to-end
 - \longrightarrow networking problem?

Modern security vulnerabilities:

- denial of service (DoS) attack
 - \rightarrow e.g., SYN flooding
- distributed DoS (DDoS) attack
 - \rightarrow e.g., commercial, personal, infrastructure
- \bullet worm attacks: e.g., CodeRed, Blaster, \ldots
 - \rightarrow buffer overflow: mainly bugs in MS DLLs
- spam mail (security issue?)

- with fault-tolerance impacts QoS (quality of service)
 - \rightarrow Aug. 04: US broadband deployment exceeds dialup
- security: trade-off with overhead
 - \rightarrow what is the desired operating point?
 - \rightarrow too much \Rightarrow too slow
 - \rightarrow too little \Rightarrow too vulnerable

For example: secure routing (S-BGP)

 \longrightarrow "BBN vs. Cisco"

Big picture:

- \longrightarrow points in the same spectrum
- \longrightarrow malicious (Byzantine) vs. non-malicious
- \longrightarrow availability
- \longrightarrow service assurances

<u>Performance</u>

Issues:

- excessive traffic can cause congestion (analogous to highways)
- traffic volume exhibits large fluctuations
 - \rightarrow burstiness
- multimedia traffic is voluminous (even for single user)
- ubiquitous access
 - \rightarrow wired/wireless Internet
- Potential for bottleneck development
 - \longrightarrow spontaneous or persistent
 - \longrightarrow similar consequences as failures

Different applications require different levels of service quality.

Challenges:

- \longrightarrow how to provide customized QoS
- \longrightarrow many users and applications: scalability
- \longrightarrow must interoperate with legacy Internet

Current state:

- overprovisioning
 - \rightarrow "throw bandwidth at the problem"
 - \rightarrow tier-1 ISPs use sophisticated traffic engineering
- still no Internet QoS
 - \rightarrow changing with VoIP and content deployment
- not economic
 - \rightarrow few tier-1 providers make money

Data networking, telephony, and content convergence

\longrightarrow Y2K+ trend

- VoIP (Voice-over-IP): wired world
 - \rightarrow traditional TDM-based telephony system is entirely separate network
 - \rightarrow economic factors are dictating convergence
 - \rightarrow from KaZaA to Skype
- cellular voice networks: 2G, 2.5G, 3G
 - \rightarrow what is 4G?
 - \rightarrow telcos/cellular providers are concerned
 - \rightarrow take-over by WLAN + IP?
 - \rightarrow strategy: active participation

• peer-to-peer: rampant content dissemination

- \rightarrow from audio to movies
- \rightarrow content providers need to get into the action
- \rightarrow do not want to get into the action

\$600 question:

 \longrightarrow what will the wireless/wireline future hold?

Mixture of high bandwidth/low bandwidth networks, wireline/wireless, ...

Network performance

An overview of key concepts.

Three yardsticks or performance measures:

- throughput: bps or b/s (bits-per-second)
- latency: msec, ms (millisecond)
 - \rightarrow signal propagation speed
- delay: msec
 - \rightarrow includes software processing overhead
- jitter: delay variation
 - \rightarrow standard deviation etc.

Bandwidth vs. throughput:

bandwidth—maximum data transmission rate achievable at the hardware level; determined by signalling rate of physical link and NIC.

throughput—maximum data transmission rate achievable at the software level; overhead of network protocols inside OS is accounted for.

reliable throughput—maximum reliable data transmission rate achievable at the software level; effect of recovery from transmission errors and packet loss accounted for.

- \longrightarrow true measure of communication speed
- \longrightarrow "goodput" or "effective throughput"
- \longrightarrow vs. "raw throughput"

Trend on protocol implementation and overhead side:

migration of protocol software functionality into NICs; NIC is becoming a powerful, semi-autonomous device

network processors: programmable NICs and more such as forwarding between NICs, i.e., router

 \longrightarrow as opposed to ASIC based devices

- \longrightarrow trade-off between hardware & software
- \longrightarrow boundary between hardware & software blurred

With proliferation of wireless networks, lower layers have become important in network programming and system design

 \longrightarrow possible project topic using iPAQs

Meaning of "high-speed" networks:

- signal propagation speed is bounded by SOL (speed-of-light)
 - $\rightarrow \sim \! 300 \mathrm{K} \ \mathrm{km/s}$ or $\sim \! 186 \mathrm{K} \ \mathrm{miles/s}$
 - \rightarrow optical fiber, copper: nearly same
 - \rightarrow coast-to-coast latency
 - \rightarrow geostationary satellites: ${\sim}22.2 \mathrm{K}$ miles/s
 - \rightarrow limitation of sending a single bit (e.g., as photon)

- can only increase "bandwidth"
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow simulatenous transmission
 - \rightarrow a single bit does not travel faster
 - \rightarrow "high-speed" \Leftrightarrow "many lanes"
 - \rightarrow completion time of large files faster

Key issue:

- \longrightarrow fat and long pipes
- \longrightarrow a lot of traffic in transit
- \longrightarrow large delay-bandwidth product (transit traffic)
- \longrightarrow significant damage before recovery
- \longrightarrow reactive cost
- \longrightarrow limitation of feedback systems (e.g., TCP)

Some units:

Gbps (Gb/s), Mbps (Mb/s), kbps (kb/s):

 10^9 , 10^6 , 10^3 bits per second; indicates data transmission rate; influenced by clock rate (MHz) of signalling hardware; soon Tbps.

 \longrightarrow communication rate: factors of 1000

Common bit rates:

- 10 Mbps (10BaseT), 100 Mbps (100BaseT)
- \bullet 11 Mbps (and 5, 2, 1 Mbps) for 802.11b WLAN
- 100 Mbps (FDDI)
- 64kb/s (digitized voice)
- 144kb/s (ISDN line 2B + D service)
- 1.544 Mbps (T1), 44.736 Mbps (T3)
- 155.52 Mbps (OC-3), 622.08 Mbps (OC-12)
- OC-24, OC-48

GB, MB, kB:

 2^{30} , 2^{20} , 2^{10} bytes; size of data being shipped; influenced by the memory structure of computer; already TB.

- \longrightarrow data size: factors of 1024
- \longrightarrow byte over bit

Common data sizes:

- 512 B, 1 kB (TCP segment size)
- 64 kB (maximum IP packet size)
- 53 B (ATM cell)
- 810 B (SONET frame)

Packet, frame, cell, datagram, message, etc.

 \longrightarrow packet most generic term

Conventional usage

- frame: LAN-level
- datagram: IP packets
- cell: ATM packets
- packet: generic
- PDU (protocol data unit): generic
- message: high-level (e.g., e-mail)