TCP connection establishment (3-way handshake):

- $\bullet X, Y$ are chosen randomly
 - \rightarrow sequence number prediction
- piggybacking

2-person consensus problem: are A and B in agreement about the state of affairs after 3-way handshake?

- → in general: impossible
- \longrightarrow can be proven
- → "acknowledging the ACK problem"
- → also TCP session ending
- \longrightarrow lunch date problem

Call Collision:

- \longrightarrow only single TCB gets allocated
- unique full association

TCP connection termination:

- \bullet full duplex
- \bullet half duplex

More generally, finite state machine representation of TCP's control mechanism:

→ state transition diagram

Features to notice:

- Connection set-up:
 - client's transition to **ESTABLISHED** state without ACK
 - how is server to reach ESTABLISHED if client ACK is lost?
 - ESTABLISHED is macrostate (partial diagram)
- Connection tear-down:
 - three normal cases
 - special issue with TIME WAIT state
 - employs hack

Basic TCP data transfer:

TCP's sliding window protocol

• sender, receiver maintain buffers MaxSendBuffer, MaxRcvBuffer

Note asynchrony between TCP module and application.

Sender side: maintain invariants

- ullet LastByteAcked \leq LastByteSent \leq LastByteWritten
- LastByteWritten—LastByteAcked < MaxSendBuffer
 - → buffer flushing (advance window)
 - → application blocking
- LastByteSent—LastByteAcked ≤ AdvertisedWindow

Thus,

 $\label{eq:continuous} {\tt EffectiveWindow-} \\ ({\tt LastByteSent-LastByteAcked})$

→ upper bound on new send volume

Actually, one additional refinement:

 \longrightarrow CongestionWindow

EffectiveWindow update procedure:

 $\label{eq:continuous} {\tt EffectiveWindow-} \\ ({\tt LastByteSent-LastByteAcked})$

where

MaxWindow =
min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

→ domain of TCP congestion control

Receiver side: maintain invariants

 $\bullet \ {\tt LastByteRead} < {\tt NextByteExpected} \leq \\ {\tt LastByteRcvd} + 1$

- ullet LastByteRcvd NextByteRead < MaxRcvBuffer
 - → buffer flushing (advance window)
 - → application blocking

Thus,

$$\label{eq:AdvertisedWindow} \begin{split} {\tt AdvertisedWindow} &= {\tt MaxRcvBuffer} - \\ &\quad ({\tt LastByteRcvd} - {\tt LastByteRead}) \end{split}$$

Issues:

How to let sender know of change in receiver window size after AdvertisedWindow becomes 0?

- trigger ACK event on receiver side when AdvertisedWindow becomes positive
- sender periodically sends 1-byte probing packet
 - → design choice: smart sender/dumb receiver
 - → same situation for congestion control

Silly window syndrome: Assuming receiver buffer is full, what if application reads one byte at a time with long pauses?

- can cause excessive 1-byte traffic
- if AdvertisedWindow < MSS then set AdvertisedWindow $\leftarrow 0$

Do not want to send too many 1 B payload packets.

Nagle's algorithm:

- rule: connection can have only one such unacknowledged packet outstanding
- while waiting for ACK, incoming bytes are accumulated (i.e., buffered)
- ... compromise between real-time constraints and efficiency.
 - → useful for telnet-type applications

Sequence number wrap-around problem: recall sufficient condition

$${\tt SenderWindowSize} < ({\tt MaxSeqNum} + 1)/2$$

→ 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around important due to possibility of roaming packets.

bandwidth	time until wrap-around †
T1 (1.5 Mbps)	6.4 hrs
Ethernet (10 Mbps)	57 min
T3 (45 Mbps)	13 min
F/E (100 Mbps)	6 min
OC-3 (155 Mbps)	4 min
OC-12 (622 Mbps)	$55 \mathrm{sec}$
OC-24 (1.2 Gbps)	$28 \mathrm{sec}$

Even more importantly, "keeping-the-pipe-full" consideration.

bandwidth	delay-bandwidth product †
T1 (1.5 Mbps)	18 kB
Ethernet (10 Mbps)	122 kB
T3 (45 Mbps)	549 kB
FDDI (100 Mbps)	1.2 MB
OC-3 (155 Mbps)	1.8 MB
OC-12 (622 Mbps)	7.4 MB
OC-24 (1.2 Gbps)	14.8 MB

 \longrightarrow 100 ms latency

Also, throughput limitation imposed by TCP receiver window size.

 \longrightarrow e.g., high-performance grid apps

RTT estimation

... important to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precautions

 $\texttt{EstimateRTT} \leftarrow \alpha \cdot \texttt{EstimateRTT} + \beta \cdot \texttt{SampleRTT}$

- SampleRTT computed by sender using timer
- $\alpha + \beta = 1$; $0.8 \le \alpha \le 0.9, 0.1 \le \beta \le 0.2$
- TimeOut $\leftarrow 2 \cdot \texttt{EstimateRTT}$ or TimeOut $\leftarrow 2 \cdot \texttt{TimeOut}$ (if retransmit)
 - → need to be careful when taking SampleRTT
 - → infusion of complexity
 - → still remaining problems

Hypothetical RTT distribution:

- → need to account for variance
- → not nearly as nice

Jacobson/Karels:

- ullet Difference = SampleRTT EstimatedRTT
- ullet EstimatedRTT $+ \delta \cdot { t Difference}$
- ullet Deviation = Deviation+ $\delta(|\mathtt{Difference}|-\mathtt{Deviation})$

Here $0 < \delta < 1$.

Finally,

ullet TimeOut $= \mu \cdot \mathtt{EstimatedRTT} + \phi \cdot \mathtt{Deviation}$

where $\mu = 1$, $\phi = 4$.

- → persistence timer
- \longrightarrow how to keep multiple timers in UNIX