

Dotted decimal notation: 10000000 00001011 00000011 00011111 \leftrightarrow 128.11.3.31

Symbolic name to IP address translation: domain name server (DNS).

Hierarchical organization: 2-level

 \longrightarrow network and host

Each interface (NIU) has an IP address; single host can have multiple IP addresses.

 \longrightarrow single-homed vs. multi-homed

Running out of addresses...

Waste of address space:

 \longrightarrow typical organization: network of networks

 \longrightarrow not too many hosts (class B: 64K)

Solution: subnetting—subdivide host ID into subnetwork ID and host ID

To determine subnet ID:

• AND IP address and subnet mask

 \rightarrow already know if class A, B, C, or D

• 3-level hierarchy

Subnet ID	Subnet Mask	Next Hop	
128.10.2.0	255.255.255.0	Interface 0	
128.10.3.0	255.255.255.0	Interface 1	
128.10.4.0	255.255.255.0	128.10.4.250	

Forwarding and address resolution:

Either destination host is connected on a shared LAN, or not (additional IP hop needed).

- \longrightarrow reachable by LAN address forwarding
- \longrightarrow if not, network address (IP) forwarding

Table look-up I ("where to"):

- For each entry, compute SubnetID = DestAddr AND SubnetMask.
- Compare *SubnetID* with *SubnetID*.
- Take forwarding action (LAN or IP).

Remaining task: translate destination or next hop IP address into LAN address

- \longrightarrow must be done in either case
- \longrightarrow address resolution protocol (ARP)

Table look-up II ("what's your LAN name"):

• If ARP table contains entry, using LAN address link layer can take over forwarding task.

 \rightarrow ultimately everything is LAN

 \rightarrow network layer: virtual

• If ARP table does not contain entry, broadcast ARP Request packet with destination IP address.

 \rightarrow e.g., Ethernet broadcast address (all 1's)

• Upon receiving ARP response, update ARP table.

Dynamically maintain ARP table: use timer for each entry (15 min) to invalidate entries.

 \longrightarrow aging (old caching technique)

Other approaches to solve address depletion problem:

- IPv6
 - $\rightarrow 128$ bits (who wants it?)
- classless (vs. classful) IP addressing
 - \rightarrow variable length subnetting
 - $\rightarrow a.b.c.d/x$ (x: mask length)
 - \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - \rightarrow used in inter-domain routing
 - \rightarrow CIDR (classless inter-domain routing)
 - \rightarrow de facto Internet addressing standard

- dynamically assigned IP addresses
 - $\rightarrow \text{reusable}$
 - \rightarrow e.g., DHCP (dynamic host configuration protocol)
 - \rightarrow used by access ISPs, enterprises, etc.
 - \rightarrow specifics: network address translation (NAT)
 - \rightarrow private/unregistered vs. public/registered IP address
 - \rightarrow can additionally use port numbers: NAPT

Ex.: SOHO (small office/home office)

 \longrightarrow now: home networking

- dynamic IP address provided by ISP is shared through NAT
- IANA (Internet Assigned Numbers Authority)

 \rightarrow non-routable: e.g., 192.168.0.0/16, 10.0.0/8

Ex.: private backbone or testbed (e.g., Q-Bahn)

 \bullet routers have 10.0.0/8 addresses

 \rightarrow each interface: a separate subnet

- only one of the routers connected to Internet
 - \rightarrow 128.10.27.0/24 address
- PCs connected to routers are dual-homed
 - \rightarrow 10.0.0/8 address & 128.10.27.0/24 address
 - \rightarrow dual-homed forwarding

Transport Protocols: TCP and UDP

- \longrightarrow end-to-end protocol
- \longrightarrow runs on top of network layer protocols
- \longrightarrow treat network layer & below as black box

Three-level encapsulation:

\rightarrow common TCP payload: HTTP

Network layer (IP) assumptions:

- unreliable
- out-of-order delivery (not frequent)
- absence of QoS guarantees (delay, throughput, etc.)
- insecure (IPv4)

 \rightarrow IPsec

Additional (informal) performance properties:

- Works "fine" under low load conditions
- Can break down under high load conditions
 - \rightarrow Atlanta Olympics
 - \rightarrow DoS attack
- Wide behavioral range: to some extent predictable

Goal of UDP (User Datagram Protocol):

- \longrightarrow process identification
- \longrightarrow port number as demux key
- \longrightarrow minimal support beyond IP

End System O.S.

UDP packet format:

2	2	
Source Port	Destination Port	
Length	Checksum	
Payload		

Checksum calculation (pseudo header):

4

Source Address				
Destination Address				
00 · · · 0	Protocol	UDP Length		

 \longrightarrow

pseudo header, UDP header and payload

UDP usage:

- Multimedia streamining
 - \rightarrow lean and nimble
 - \rightarrow at minimum requires process identification
 - \rightarrow congestion control carried out above UDP
- Stateless client/server applications
 - \rightarrow persistent state a hinderance
 - \rightarrow lightweight

Goals of TCP (Transmission Control Protocol):

- process identification
- reliable communication: ARQ
- speedy communication: congestion control
- segmentation
 - \longrightarrow connection-oriented, i.e., stateful
 - \longrightarrow complex mixture of functionalities

Segmentation task: provide "stream" interface to higher level protocols

- \longrightarrow exported semantics: contiguous byte stream
- \longrightarrow recall ARQ
- segment stream of bytes into blocks of fixed size
- segment size determined by TCP MTU (Maximum Transmission Unit)
- actual unit of transmission in ARQ

2

2

- Sequence Number: position of first byte of payload
- Acknowledgement: next byte of data expected (receiver)
- Header Length (4 bits): 4 B units
- URG: urgent pointer flag
- ACK: ACK packet flag
- PSH: override TCP buffering
- RST: reset connection
- SYN: establish connection
- FIN: close connection
- Window Size: receiver's advertised window size
- Checksum: prepend pseudo-header
- Urgent Pointer: byte offset in current payload where urgent data begins
- Options: MTU; take min of sender & receiver (default 556 B)

4

Source Address				
Destination Address				
00 · · · 0	Protocol	TCP Segment Length		

 \rightarrow pseudo header, TCP header and payload