END-TO-END COMMUNICATION

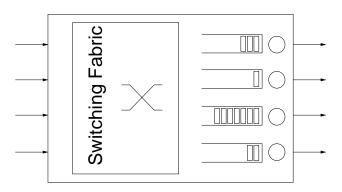
Goal: Interconnect multiple LANs.

Why?

- Diverse LANs speak different languages
 - \rightarrow need to make them talk to each other
- Need management flexibility
 - \rightarrow global vs. local Internet
 - \rightarrow administrative policy barriers

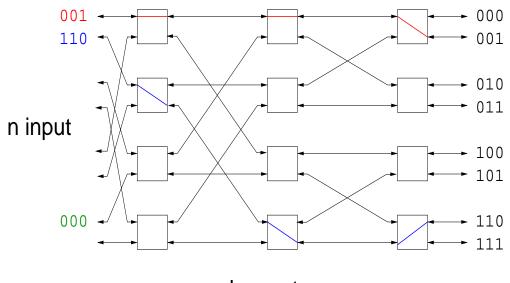
Problems:

- How to choose paths (routing)?
- How to regulate flow (congestion control)?

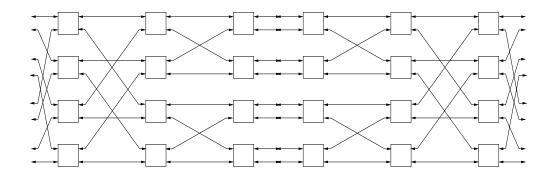

 \rightarrow not too much, not too little

• How to provide service quality (QoS control)?

Packet Switching vs. Circuit Switching


Router/switch design:

- Hardware: ASIC
- Software: fast PC as router or gateway
- Hybrid: network processor
 - \rightarrow programmable

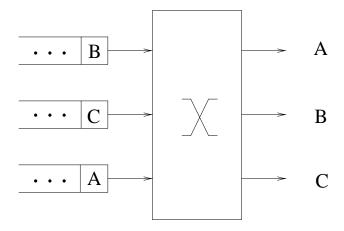

- \longrightarrow fast vs. slow forwarding path
- \longrightarrow interconnection network

Ex.: Butterfly interconnection network

log n stages

- self-routing
 - \rightarrow enter top: if 0 go through else cross
 - \rightarrow enter bottom: opposite
- blocking
 - \rightarrow some permutations cause collision
 - \rightarrow e.g., 001 and 000 collide at second stage

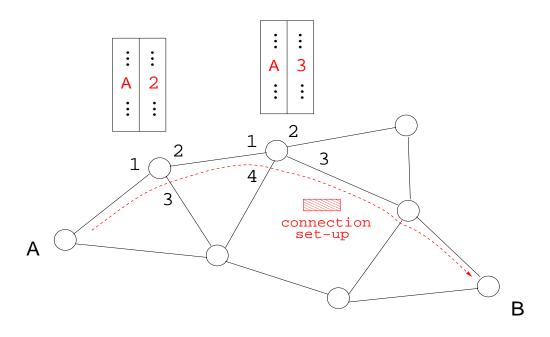
2 log n stages


- \longrightarrow non-blocking but cannot use self-routing
- \longrightarrow cost: $O(n \log n)$

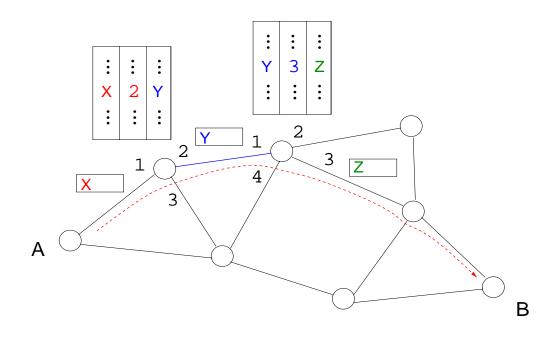
Cross-bar: everyone-to-everyone else

- \longrightarrow non-blocking
- \longrightarrow cost: $O(n^2)$
- \longrightarrow doesn't scale; ok for small n (in practice)

Problem with input-buffered switch design:


 \longrightarrow head-of-line blocking

Most routers: output-buffered design


- \longrightarrow get to output port fast: routing
- \longrightarrow not done yet: output port may be crowded
- \longrightarrow packet scheduling

Circuit-switched forwarding:

- connection set-up message: signaling
 - \rightarrow how to: routing subsystem
 - \rightarrow different from forwarding subsystem
- source tag "A" inserted into look-up table
 - \rightarrow on-demand, compact look-up table
 - \rightarrow deletion upon termination
 - \rightarrow tag: VPI (virtual path identifier)

VCI (virtual channel identifier):

- \longrightarrow keep switching tag (hop-to-hop)
- \longrightarrow bundling effect on heavily shared link/channel
- \longrightarrow e.g., share same tag X on blue link
- \longrightarrow sufficient?
- \longrightarrow need VCI/VPI pair

- \longrightarrow dispense with connection set-up signaling
- \longrightarrow each packet: autonomous entity

Source routing:

 \bullet packet contains path information

 $\rightarrow \langle A, C, \dots, B \rangle$

• drawback: header length increases with path length \rightarrow not good for fast packet handling

Destination-based forwarding:

- determine output port by destination address
- source address ignored
 - \longrightarrow destination address: postfix VCI
 - \longrightarrow same destination, same path: at any node
 - \longrightarrow Internet packet switching

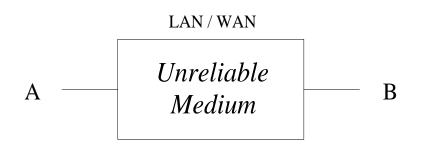
Internet Protocol (IP)

Goals:

- interconnect diverse LANs into one logical entity
- implement best-effort service
 - \rightarrow no assurances ("what you get is what you get")

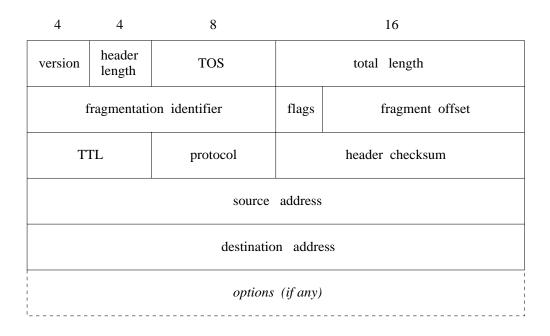
 \rightarrow simplicity

Represents:


• common language for carrying out non-LAN-specific conversations

 \rightarrow technical definition of Internet

- functionality and design philosophy
 - \rightarrow simple core / complex edge
 - \rightarrow end-to-end paradigm


Best-effort vs. guaranteed service:

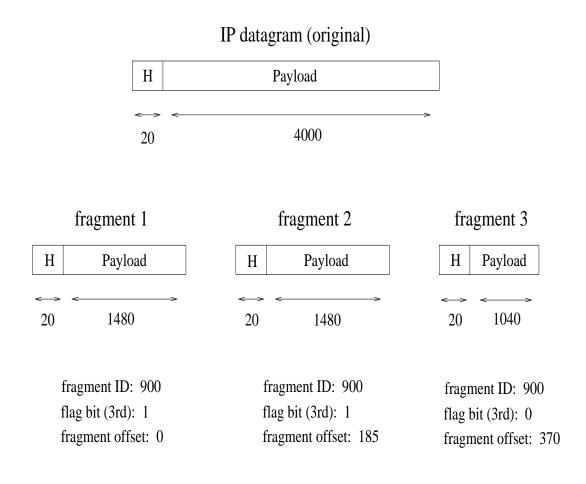
- easier to implement best-effort service; no resource reservation/leasing
- simplifies router design but increases complexity of end stations
- necessitates higher-up functional layer to achieve reliable transmission over unreliable medium

"Black Box"

IP packet format:

- Header length: in 4 byte (word) units.
- TOS (type-of-service): Partially used.
- 4 bytes used for fragmentation.
- TTL (time-to-live): Prevent cycling (default 64).
- Protocol: demultiplexing key (TCP 6, UDP 17).

LAN has maximum transmission unit (MTU): maximum frame size


 \longrightarrow e.g., Ethernet 1500 B, FDDI 4500 B

- potential size mismatch problem (IP 64 kB)
- may happen multiple times hopping from LAN to LAN

Solution: fragment IP packet when needed, maintain sequencing information, then reassemble at destination.

- assign unique fragmentation ID
- set 3rd flag bit if fragmentation in progress
- sequence fragments using offset in units of 8 bytes

Example: IP fragmentation (Ethernet MTU)

Note: Each fragment is an independent IP packet.

Destination discards all fragments of an IP packet if one is lost.

- \longrightarrow "all for one, one for all"
- \longrightarrow set 2nd flag bit to disable fragmentation

TCP: Negotiate at start-up TCP segment (packet) size based on MTU; 1 kB or 512 B are common.

 \longrightarrow tries to prevent fragmentation