Digital vs. Analog Data

Digital data: bits.

- \longrightarrow discrete signal
- \longrightarrow both in time and amplitude

Analog data: audio/voice, video/image

- \longrightarrow continuous signal
- \longrightarrow both in time and amplitude

Both forms used in today's network environment.

- \longrightarrow burning CDs
- \longrightarrow audio/video playback

In broadband networks:

 \longrightarrow use analog data to carry digital data

Important task: analog data is often digitized

- \longrightarrow useful: why?
- \longrightarrow basics: digital signal processing

How to digitize such that digital representation is faithful?

- \longrightarrow sampling
- \longrightarrow interface between analog & digital world

Intuition behind sampling:

 \rightarrow slowly vs. rapidly varying signal

If a signal varies quickly, need more samples to not miss details/changes.

$$\nu_1 = 1/T_1 < \nu_2 = 1/T_2$$

Are regularly spaced samples of fixed interval the best?

- \longrightarrow perhaps "savings" possible
- \longrightarrow the more samples, the more bits

Application: network probing

- \longrightarrow goal: ascertain network state
- \longrightarrow send sequence of probe packets
- \longrightarrow from arriving probes infer/estimate congestion

But, do not want to disturb Schrödinger's cat ...

- \longrightarrow networking: minimize overhead
- \longrightarrow irregular probing
- \longrightarrow assurance: probabilistic

Sampling criterion for guaranteed faithfulness:

Sampling Theorem (Nyquist): Given continuous bandlimited signal s(t) with $S(\omega) = 0$ for $|\omega| > W$, s(t)can be reconstructed from its samples if

$$\nu > 2W$$

where ν is the sampling rate.

 $\longrightarrow \nu$: samples per second

Issue of digitizing amplitude/magnitude ignored

- \longrightarrow problem of quantization
- \longrightarrow possible source of information loss
- \longrightarrow exploit limitations of human perception
- \longrightarrow logarithmic scale

Compression

Information transmission over noiseless medium

 \longrightarrow medium or "channel"

Sender wants to communicate information to receiver over noiseless channel.

- \longrightarrow receive exactly what is sent
- \longrightarrow idealized scenario

Set-up:

- \longrightarrow take a system perspective
- \longrightarrow e.g., modem manufacturer

Need to specify two parts: property of source and how compression is done.

Part I. What does the source look like:

 \bullet source s emits symbols from finite alphabet set Σ

 \rightarrow e.g., $\Sigma = \{0, 1\}; \Sigma = ASCII$ character set

symbol a ∈ Σ is generated with probability p_a > 0
→ e.g., books have known distribution for 'e', 'x' ...
→ let's play "Wheel of Fortune"

Part II. Compression machinery:

- code book F assigns code word $w_a = F(a)$ for each symbol $a \in \Sigma$
 - $\rightarrow w_a$ is a binary string of length $|w_a|$
 - $\rightarrow F$ could be just a table
- F is invertible
 - \rightarrow receiver d can recover a from w_a
 - $\rightarrow F^{-1}$ is the same table, different look-up

•
$$F^1$$
: $w_A = 00, w_C = 01, w_G = 10, w_T = 11$

•
$$F^2$$
: $w_A = 0, w_C = 10, w_G = 110, w_T = 1110$

 \longrightarrow pros & cons?

Note: code book F is not unique

$$\longrightarrow$$
 find a "good" code book

 \longrightarrow when is a code book good?

Performance (i.e., "goodness") measure: average code length ${\cal L}$

$$L = \sum_{a \in \Sigma} p_a |w_a|$$

 \rightarrow average number of bits consumed by given F

Ex.: If DNA sequence is 10000 letters long, then require on average $10000 \cdot L$ bits to be transmitted.

 \longrightarrow good to have code book with small L

Optimization problem: Given source $\langle \Sigma, \mathbf{p} \rangle$ where \mathbf{p} is a probability vector, find a code book F with least L.

A fundamental result on what is achievable to attain small L.

Entropy H of source $\langle \Sigma, \mathbf{p} \rangle$ is defined as

$$H = \sum_{a \in \Sigma} p_a \log \frac{1}{p_a}$$

Ex.: $\Sigma = \{A, C, G, T\}$; *H* is maximum if $p_A = p_C = p_G = p_T = 1/4$.

 \longrightarrow when is it minimum?

Source Coding Theorem (Shannon): For all F, $H \leq L$.

Moreover, L can be made to approach H.

- To approach minimum H use blocks of k symbols \rightarrow extension code
- entropy is innate property of source s
- Ensemble limitation
 - \rightarrow e.g., sending number $\pi = 3.1415927...$
 - \rightarrow better way?