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Fundamentals of information transmission

and coding (a.k.a. communication theory)

Signals and functions

Elementary operation of communication: send signal on

medium from A to B.

• media—copper wire, optical fiber, air/space, . . .

• signals—voltage and currents, light pulses, radio waves,

microwaves, . . .

→ electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function s(t).
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If s(t) is “sufficiently nice” (Dirichlet conditions) then s(t)

can be represented as a linear combination of complex

sinusoids:
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Simple example:
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−→ sinusoids form basis for other signals
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Analogous to basis in linear algebra:

other elements can be expressed as linear combi-

nations of “elementary” elements in the basis set

−→ like atoms

Ex.: in 3-D, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form a basis.

−→ (7, 2, 4) = 7 · (1, 0, 0) + 2 · (0, 1, 0) + 4 · (0, 0, 1)

−→ coefficients: 7, 2, 4

−→ spectrum

How many elements are there in a basis?
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Vector spaces:

• finite dimensional

• infinite dimensional: signals

→ infinite number of bases

→ subject of functional analysis

Given an arbitrary element in the vector space, how to

find the coefficient of basis elements?

−→ e.g., given (7, 2, 4), coefficient of (0, 1, 0)?
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In linear algebra, matrix inversion:

Ax = y ⇔ x = A−1y

where A is (n × n) matrix, x and y are (n × 1) vectors.

−→ solution techniques: e.g., Gaussian elimination

Note: the arbitrary vector y (our “signal”) is represented

as a linear combination

y = Ax = x1A1 + x2A2 + · · · + xnAn

where x = (x1, x2, . . . , xn) and Ai is the ith column

vector of A.

−→ the Ai’s are the bases!

−→ correct viewpoint of the world (for us)

For continuous (i.e., infinite dimensional) signals . . .
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Fourier expansion and transform:

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdω,

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt.

−→ recall: eiωt = cos ωt + i sin ωt

−→ signal s(t) is a linear combination of the eiωt’s

−→ S(ω): coefficient of basis elements

−→ time domain vs. frequency domain

Frequency ω: cycles per second (Hz)

−→ ω = 1/T

T : period of sinusoid
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Example: square wave
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Example: audio (e.g., speech) signal

Source: Dept. of Linguistics and Phonetics, Lund University
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Random function (i.e., white noise) has “flat-looking”

spectrum.

−→ unbounded bandwidth

Why bother with frequency domain representation?

−→ contains same information (invertible) . . .

−→ convenience

−→ brings out “relevant” information
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Luckily, most “interesting” functions arising in practice

are “special”:

−→ bandlimited

−→ i.e., S(ω) = 0 for |ω| sufficiently large

−→ when S(ω) ≈ 0, can treat as S(ω) = 0

−→ let’s approximate!

−→ e.g., square wave
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Ex.: human auditory system

−→ 20 Hz–20 kHz

−→ speech is intelligible at 300 Hz–3300 Hz

−→ broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

−→ bandwidth 3000 Hz

−→ copper medium: various grades

−→ no problem transmitting 3000 Hz signals
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For communication:

Both absolute frequency and bandwidth are relevant.

−→ baseband vs. broadband

−→ high-speed ⇔ broadband

Manipulate shape of different frequency sinusoids to si-

multaneously carry information (i.e., bits).

−→ multi-lane highway analogy

−→ different lane ⇔ different frequency

Manipulation of different frequencies can create compli-

cated looking s(t).

−→ side effect of encoding

−→ decoding: use Fourier transform


