FUNDAMENTALS OF INFORMATION TRANSMISSION AND CODING (A.K.A. COMMUNICATION THEORY)

Signals and functions

Elementary operation of communication: send signal on medium from A to B.

- media—copper wire, optical fiber, air/space, ...
- signals—voltage and currents, light pulses, radio waves, microwaves, . . .
 - \rightarrow electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function s(t).

If s(t) is "sufficiently nice" (Dirichlet conditions) then s(t) can be represented as a linear combination of complex sinusoids:

Simple example:

 \rightarrow sinusoids form basis for other signals

Analogous to basis in linear algebra:

other elements can be expressed as linear combinations of "elementary" elements in the basis set

 \longrightarrow like atoms

Ex.: in 3-D, $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ form a basis.

 $\longrightarrow (7,2,4) = 7 \cdot (1,0,0) + 2 \cdot (0,1,0) + 4 \cdot (0,0,1)$

$$\longrightarrow$$
 coefficients: 7, 2, 4

$$\longrightarrow$$
 spectrum

How many elements are there in a basis?

Vector spaces:

- finite dimensional
- infinite dimensional: signals
- \rightarrow infinite number of bases
- \rightarrow subject of functional analysis

Given an arbitrary element in the vector space, how to find the coefficient of basis elements?

 \longrightarrow e.g., given (7, 2, 4), coefficient of (0, 1, 0)?

In linear algebra, matrix inversion:

$$A \boldsymbol{x} = \boldsymbol{y} \quad \Leftrightarrow \quad \boldsymbol{x} = A^{-1} \boldsymbol{y}$$

where A is $(n \times n)$ matrix, \boldsymbol{x} and \boldsymbol{y} are $(n \times 1)$ vectors.

 \longrightarrow solution techniques: e.g., Gaussian elimination

Note: the arbitrary vector \boldsymbol{y} (our "signal") is represented as a linear combination

$$\boldsymbol{y} = A\boldsymbol{x} = x_1A_1 + x_2A_2 + \dots + x_nA_n$$

where $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ and A_i is the *i*th column vector of A.

 \longrightarrow the A_i 's are the bases!

 \longrightarrow correct viewpoint of the world (for us)

For continuous (i.e., infinite dimensional) signals ...

Fourier expansion and transform:

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega,$$
$$S(\omega) = \int_{-\infty}^{\infty} s(t) e^{-i\omega t} dt.$$

$$\longrightarrow$$
 recall: $e^{i\omega t} = \cos \omega t + i \sin \omega t$

- \longrightarrow signal s(t) is a linear combination of the $e^{i\omega t}$'s
- $\longrightarrow S(\omega)$: coefficient of basis elements
- \longrightarrow time domain vs. frequency domain

Frequency ω : cycles per second (Hz)

$$\longrightarrow \omega = 1/T$$

T: period of sinusoid

Example: square wave

Source: Dept. of Linguistics and Phonetics, Lund University

Random function (i.e., white noise) has "flat-looking" spectrum.

 \longrightarrow unbounded bandwidth

Why bother with frequency domain representation?

- \longrightarrow contains same information (invertible) ...
- \longrightarrow convenience
- \longrightarrow brings out "relevant" information

Luckily, most "interesting" functions arising in practice are "special":

- \longrightarrow bandlimited
- \longrightarrow i.e., $S(\omega) = 0$ for $|\omega|$ sufficiently large
- \longrightarrow when $S(\omega) \approx 0$, can treat as $S(\omega) = 0$
- \longrightarrow let's approximate!
- \longrightarrow e.g., square wave

Ex.: human auditory system

- \longrightarrow 20 Hz–20 kHz
- \longrightarrow speech is intelligible at 300 Hz–3300 Hz
- \longrightarrow broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property

- \longrightarrow bandwidth 3000 Hz
- \longrightarrow copper medium: various grades
- \longrightarrow no problem transmitting 3000 Hz signals

Both absolute frequency and bandwidth are relevant.

- \longrightarrow baseband vs. broadband
- \longrightarrow high-speed \Leftrightarrow broadband

Manipulate shape of different frequency sinusoids to **simultaneously** carry information (i.e., bits).

- \longrightarrow multi-lane highway analogy
- \longrightarrow different lane \Leftrightarrow different frequency

Manipulation of different frequencies can create complicated looking s(t).

- \longrightarrow side effect of encoding
- \longrightarrow decoding: use Fourier transform