CS 536 Park

FUNDAMENTALS OF INFORMATION TRANSMISSION
AND CODING (A.K.A. COMMUNICATION THEORY )

Signals and functions

Elementary operation of communication: send signal on
medium from A to B.

e media—copper wire, optical fiber, air/space, . ..

e signals—voltage and currents, light pulses, radio waves,
MICTOWaves, . . .

— electromagnetic wave (let there be light!)

Signal can be viewed as a time-varying function s(t).
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If s(¢) is “sufficiently nice” (Dirichlet conditions) then s(t)
can be represented as a linear combination of complex
sinusoids:
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Simple example:
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—— sinusoids form basis for other signals
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Analogous to basis in linear algebra:

other elements can be expressed as linear combi-
nations of “elementary” elements in the basis set

—— like atoms

Ex.: in 3-D, {(1,0,0), (0,1,0), (0,0,1)} form a basis.
— (7,2,4)=7-(1,0,0)+2-(0,1,0) +4-(0,0,1)
—— coefficients: 7, 2, 4

— spectrum

How many elements are there in a basis?
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Vector spaces:
e finite dimensional

e infinite dimensional: signals
— infinite number of bases

— subject of functional analysis

Given an arbitrary element in the vector space, how to
find the coefficient of basis elements?

— e.g., given (7,2,4), coefficient of (0,1,0)?
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In linear algebra, matrix inversion:
Ar=y & zxz=Aly
where A is (n X n) matrix,  and y are (n x 1) vectors.

—— solution techniques: e.g., Gaussian elimination

Note: the arbitrary vector y (our “signal”) is represented
as a linear combination

y=Ax = 11 A| + 1245 + - + 1,4,

where € = (x1,29,...,2,) and A; is the ith column
vector of A.

—— the A;’s are the bases!

— correct viewpoint of the world (for us)

For continuous (i.e., infinite dimensional) signals . ..
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Fourier expansion and transform:

1

s(t) = — / " S(w)etdw,

2T J_

S(w) = / N s(t)e "“'dt.

©.9)

— recall: e“! = coswt + 7 sin wt
— signal s(t) is a linear combination of the e™“'’s
— S(w): coeflicient of basis elements

— time domain vs. frequency domain

Frequency w: cycles per second (Hz)

— w=1/T

T': period of sinusoid
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Example: square wave
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Example: audio (e.g., speech) signal
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Source: Dept. of Linguistics and Phonetics, Lund University
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Random function (i.e.; white noise) has “flat-looking”
spectrum.

—— unbounded bandwidth

Why bother with frequency domain representation?
— contains same information (invertible) ...
— convenience

—— brings out “relevant” information
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Luckily, most “interesting” functions arising in practice
are “special”:

— bandlimited

— i.e., S(w) =0 for |w| sufficiently large
— when S(w) = 0, can treat as S(w) = 0
— let’s approximate!

— e.g., square wave
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Ex.: human auditory system
— 20 Hz—20 kHz
— speech is intelligible at 300 Hz-3300 Hz

— broadcast quality audio; CD quality audio

Telephone systems: engineered to exploit this property
— bandwidth 3000 Hz
—— copper medium: various grades

—— no problem transmitting 3000 Hz signals
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For communication:

Both absolute frequency and bandwidth are relevant.
— baseband vs. broadband

—— high-speed < broadband

Manipulate shape of different frequency sinusoids to si-
multaneously carry information (i.e., bits).

—— multi-lane highway analogy

—— different lane < different frequency

Manipulation of different frequencies can create compli-
cated looking s(t).

—— side effect of encoding

—— decoding: use Fourier transform



