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Visualize action in 2-D (Q(t), λ(t))-space:

−→ phase space
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Convergent trajectory:

−→ asymptotically stable & optimal
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Divergent trajectory:

−→ unstable
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Stable (but not asymptotically so) trajectory:

−→ limit cycle
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Which case arises depends on the specifics of protocol

actions.

For example:

• Methods A and C: divergent

• Method B: stable (but not asymptotically)

→ TCP

• Method D: asymptotically stable & optimal

→ “optimal control”

Why does Method D work:

−→ overview of underlying mathematics
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First, represent in continuous form:

−→ easier to manipulate

−→ more elegant

dQ(t)

dt
= λ(t)− γ

dλ(t)

dt
= ε(Q∗ −Q(t))− β(λ(t)− γ)

In vector form:

d

dt

(
Q(t)

λ(t)

)
=

(
0 1

−ε −β

) (
Q(t)

λ(t)

)
+

(
−γ

εQ∗ + βγ

)

View as
dx(t)

dt
= A x(t) + b

where x(t) = (Q(t), λ(t)).



CS 536 Park

Note: at desired/optimal operating point (Q∗, γ),

dQ(t)

dt
= 0 and

dλ(t)

dt
= 0

−→ (Q∗, γ) is a rest point or equilibrium

−→ “when in heaven/nirvana, stay put”

Rest point (or fixed-point) condition is necessary but not

sufficient:

−→ external factors & noise makes x stray

−→ can it return to (Q∗, γ)

−→ question of stability
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Ex.: ball on a hill vs. ball in a valley

−→ both are fixed-points

−→ only one is stable w.r.t. perturbation

How do we determine stability of

dx(t)/dt = Ax(t) + b ?

Idea: consider dz/dt = az

−→ a: positive or negative constant

−→ what’s the rest point?

−→ what happens to z over time?

−→ a: eigenvalue of the (1-D) system
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Same idea applies to multi-dimensional linear systems

−→ in n dimensions: n eigenvalues

−→ asymptotic stability: all are negative

−→ stability: some may be 0

−→ unstable: one or more positive eigenvalues

What are eigenvalues, eigenvectors. . .

−→ given matrix A: Au = au

−→ u: eigenvector of A

−→ a: u’s eigenvalue

−→ “operator” A stretches or pulls
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Thus: for our 2-D congestion control system, stability

depends on the eigenvalues of

A =

(
0 1

−ε −β

)

Congestion control system is asymptotically stable if the

real parts of the eigenvalues are strictly negative

−→ eigenvalues can be complex

What remains. . . let’s calculate and check!
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Eigenvalues are obtained from characteristic equation

det

(
−ν 1

−ε −β − ν

)
= ν(β + ν) + ε

= ν2 + βν + ε = 0

This yields:

ν =
−β

2
±

√
β2 − 4ε

2

If ε > 0, then Re(ν) < 0. If, in addition, 0 < ε < β/2

then the eigenvalues are real.
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Check: without the −β(λ(t)−γ) term in the control law,

the characteristic equation becomes

ν2 + ε = 0

Thus, ν = ±√ε and the real part of ν is zero, violating

the asymptotic stability condition.

−→ mathematical requirement

−→ intuitively: damping effect

What about when throughput γ experiences congestion:

under excessive load goes down

−→ note: we assumed constant γ in analysis
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TCP congestion control

Recall:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

Key question: how to set CongestionWindow which, in

turn, affects ARQ’s sending rate?

−→ linear increase/exponential decrease

−→ AIMD
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TCP congestion control components:

(i) Congestion avoidance

−→ linear increase/exponential decrease

−→ additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly,

but decrease exponentially

Upon receiving ACK:

CongestionWindow ← CongestionWindow + 1

Upon timeout:

CongestionWindow ← CongestionWindow / 2

But is it correct. . .



CS 536 Park

“Linear increase” time diagram:
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−→ results in exponential increase
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What we want:

Sender Receiver

time

RTT

time

2

1

3
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5

−→ increase by 1 every window
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Thus, linear increase update:

CongestionWindow ← CongestionWindow

+ (1 / CongestionWindow)

Upon timeout and exponential backoff,

SlowStartThreshold ← CongestionWindow / 2
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(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

CongestionWindow ← CongestionWindow + 1

• Until timeout at start of connection

→ rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold

following Congestion Avoidance

→ rapidly climb to safe level

−→ “slow” is a misnomer

−→ exponential increase is super-fast
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Basic dynamics:

−→ after connection set-up

−→ before connection tear-down

Slow Start

connection start

Slow Start

timeout

Congestion Avoidance Slow Start

timeout

repeat

SlowStartThreshold
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CongestionWindow evolution:

CongestionWindow

Events (ACK or timeout)

timeout

timeout

timeout

ssthresh

ssthresh
ssthresh

−→ what happens if receiver window size hits max?

−→ DOE, supercomputing centers, etc.
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(iii) Exponential timer backoff

TimeOut← 2 · TimeOut if retransmit

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

• Transmit next expected segment

→ segment indicated by ACK value

• Perform exponential backoff and commence Slow Start

−→ three duplicate ACKs: likely segment is lost

−→ react before timeout occurs

TCP Tahoe: features (i)-(iv)
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(v) Fast Recovery

Upon Fast Retransmit:

• Skip Slow Start and commence Congestion Avoidance

→ dup ACKs: likely spurious loss

• Insert “inflationary” phase just before Congestion Avoid-

ance

Inflationary phase:

• SlowStartThreshold← CongestionWindow / 2

• CongestionWindow← SlowStartThreshold + 3

• On each additional duplicate ACK, increment

CongestionWindow

• On first non-dup ACK, commence Congestion Avoid-

ance

CongestionWindow← SlowStartThreshold
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TCP Reno: features (i)-(v)

−→ pre-dominant form

Many more versions of TCP:

−→ NewReno w/ SACK, w/o SACK, Vegas, etc.

−→ wireless, ECN, multiple time scale

−→ mixed verdict; pros/cons
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Given sawtooth behavior of TCP’s linear increase/exponential

backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD

(Method B) is not appropriate

→ use Method D

• For unimodal case—throughput decreases when sys-

tem load is excessive—story is more complicated

→ asymmetry in control law needed for stability


