

Convergent trajectory:

\longrightarrow asymptotically stable & optimal

Divergent trajectory:

Stable (but not asymptotically so) trajectory:

Which case arises depends on the specifics of protocol actions.

For example:

- Methods A and C: divergent
- Method B: stable (but not asymptotically)

 $\rightarrow \text{TCP}$

• Method D: asymptotically stable & optimal

 \rightarrow "optimal control"

Why does Method D work:

 \rightarrow overview of underlying mathematics

First, represent in continuous form:

- \longrightarrow easier to manipulate
- \longrightarrow more elegant

$$\frac{dQ(t)}{dt} = \lambda(t) - \gamma$$
$$\frac{d\lambda(t)}{dt} = \varepsilon(Q^* - Q(t)) - \beta(\lambda(t) - \gamma)$$

In vector form:

$$\frac{d}{dt} \begin{pmatrix} Q(t) \\ \lambda(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\varepsilon & -\beta \end{pmatrix} \begin{pmatrix} Q(t) \\ \lambda(t) \end{pmatrix} + \begin{pmatrix} -\gamma \\ \varepsilon Q^* + \beta \gamma \end{pmatrix}$$

View as

$$\frac{d\boldsymbol{x}(t)}{dt} = A\,\boldsymbol{x}(t) + \boldsymbol{b}$$

where $\boldsymbol{x}(t) = (Q(t), \lambda(t)).$

$$\frac{dQ(t)}{dt} = 0$$
 and $\frac{d\lambda(t)}{dt} = 0$

 $\longrightarrow (Q^*, \gamma)$ is a rest point or equilibrium

$$\longrightarrow$$
 "when in heaven/nirvana, stay put"

Rest point (or fixed-point) condition is necessary but not sufficient:

- $\longrightarrow\,$ external factors & noise makes ${\pmb x}$ stray
- \longrightarrow can it return to (Q^*, γ)
- \longrightarrow question of stability

Ex.: ball on a hill vs. ball in a valley

 \longrightarrow both are fixed-points

 \longrightarrow only one is stable w.r.t. perturbation

How do we determine stability of

 $d\boldsymbol{x}(t)/dt = A \, \boldsymbol{x}(t) + \boldsymbol{b}$?

Idea: consider dz/dt = az

- \longrightarrow a: positive or negative constant
- \longrightarrow what's the rest point?
- \longrightarrow what happens to z over time?
- \longrightarrow a: eigenvalue of the (1-D) system

Same idea applies to multi-dimensional linear systems

- \longrightarrow in *n* dimensions: *n* eigenvalues
- \longrightarrow asymptotic stability: all are negative
- \longrightarrow stability: some may be 0
- \longrightarrow unstable: one or more positive eigenvalues

What are eigenvalues, eigenvectors...

- \longrightarrow given matrix $A: A\boldsymbol{u} = a\boldsymbol{u}$
- \longrightarrow **u**: eigenvector of A
- \longrightarrow a: **u**'s eigenvalue
- \longrightarrow "operator" A stretches or pulls

Thus: for our 2-D congestion control system, stability depends on the eigenvalues of

$$A = \begin{pmatrix} 0 & 1 \\ -\varepsilon & -\beta \end{pmatrix}$$

Congestion control system is asymptotically stable if the real parts of the eigenvalues are strictly negative

 \longrightarrow eigenvalues can be complex

What remains... let's calculate and check!

Eigenvalues are obtained from characteristic equation

$$\det \begin{pmatrix} -\nu & 1\\ -\varepsilon & -\beta - \nu \end{pmatrix} = \nu(\beta + \nu) + \varepsilon$$
$$= \nu^2 + \beta\nu + \varepsilon = 0$$

This yields:

$$\nu = \frac{-\beta}{2} \pm \frac{\sqrt{\beta^2 - 4\varepsilon}}{2}$$

If $\varepsilon > 0$, then $Re(\nu) < 0$. If, in addition, $0 < \varepsilon < \beta/2$ then the eigenvalues are real.

Check: without the $-\beta(\lambda(t) - \gamma)$ term in the control law, the characteristic equation becomes

$$\nu^2 + \varepsilon = 0$$

Thus, $\nu = \pm \sqrt{\varepsilon}$ and the real part of ν is zero, violating the asymptotic stability condition.

 \longrightarrow mathematical requirement

 \longrightarrow intuitively: damping effect

What about when throughput γ experiences congestion: under excessive load goes down

 \longrightarrow note: we assumed constant γ in analysis

TCP congestion control

Recall:

```
\label{eq:linear} \begin{split} \texttt{EffectiveWindow} &= \texttt{MaxWindow} - \\ & (\texttt{LastByteSent} - \texttt{LastByteAcked}) \end{split}
```

where

```
MaxWindow =
min{ AdvertisedWindow, CongestionWindow }
```

Key question: how to set **CongestionWindow** which, in turn, affects ARQ's sending rate?

- \longrightarrow linear increase/exponential decrease
- \longrightarrow AIMD

TCP congestion control components:

(i) Congestion avoidance

 \longrightarrow linear increase/exponential decrease

 \longrightarrow additive increase/exponential decrease (AIMD)

As in Method B, increase CongestionWindow linearly, but decrease exponentially

Upon receiving ACK:

 $\texttt{CongestionWindow} \leftarrow \texttt{CongestionWindow} + 1$

Upon timeout:

 $CongestionWindow \leftarrow CongestionWindow / 2$

But is it correct...

"Linear increase" time diagram:

 \rightarrow results in exponential increase

 \longrightarrow increase by 1 every window

Upon timeout and exponential backoff,

```
\texttt{SlowStartThreshold} \leftarrow \texttt{CongestionWindow} \ / \ 2
```

(ii) Slow Start

Reset CongestionWindow to 1

Perform exponential increase

```
\texttt{CongestionWindow} \leftarrow \texttt{CongestionWindow} + 1
```

• Until timeout at start of connection

 \rightarrow rapidly probe for available bandwidth

• Until CongestionWindow hits SlowStartThreshold following Congestion Avoidance

 \rightarrow rapidly climb to safe level

- \longrightarrow "slow" is a misnomer
- \longrightarrow exponential increase is super-fast

Basic dynamics:

- \longrightarrow after connection set-up
- \longrightarrow before connection tear-down

CongestionWindow evolution:

- \longrightarrow what happens if receiver window size hits max?
- \longrightarrow DOE, supercomputing centers, etc.

(iii) Exponential timer backoff

```
TimeOut \leftarrow 2 \cdot TimeOut if retransmit
```

(iv) Fast Retransmit

Upon receiving three duplicate ACKs:

- Transmit next expected segment
 - \rightarrow segment indicated by ACK value
- Perform exponential backoff and commence Slow Start
 - \longrightarrow three duplicate ACKs: likely segment is lost
 - \longrightarrow react before timeout occurs
- TCP Tahoe: features (i)-(iv)

(v) Fast Recovery

Upon Fast Retransmit:

◆ Skip Slow Start and commence Congestion Avoidance
 → dup ACKs: likely spurious loss

• Insert "inflationary" phase just before Congestion Avoidance

Inflationary phase:

- SlowStartThreshold \leftarrow CongestionWindow / 2
- CongestionWindow \leftarrow SlowStartThreshold + 3
- On each additional duplicate ACK, increment CongestionWindow
- On first non-dup ACK, commence Congestion Avoidance

 $CongestionWindow \leftarrow SlowStartThreshold$

TCP Reno: features (i)-(v)

 \longrightarrow pre-dominant form

Many more versions of TCP:

- $\longrightarrow\,$ NewReno w/ SACK, w/o SACK, Vegas, etc.
- \longrightarrow wireless, ECN, multiple time scale
- \longrightarrow mixed verdict; pros/cons

Given sawtooth behavior of TCP's linear increase/exponential backoff:

Why use exponential backoff and not Method D?

• For multimedia streaming (e.g., pseudo real-time), AIMD (Method B) is not appropriate

 \rightarrow use Method D

• For unimodal case—throughput decreases when system load is excessive—story is more complicated

 $[\]rightarrow$ asymmetry in control law needed for stability