CS 536 Park

CONGESTION CONTROL

Phenomenon: when too much traffic enters into system,
performance degrades

— excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does
not occur

— congestion control

Need to understand:
e What is congestion?

e How do we prevent or manage it”

CS 536 Park

Traffic influx/outflux picture:

M f'
< Network w} =) traffic outflux
~

) N

traffic in—flight

traffic influx

\\ 1 //

o traffic influx: A(¢) “offered load”
— rate: bps (or pps) at time ¢

o traffic outflux: v(¢) “throughput”
— rate: bps (or pps) at time ¢

e traffic in-flight: Q(¢)

— volume: total packets in transit at time ¢

CS 536 Park

Examples:

Highway system:
e traffic influx: no. of cars entering highway per second
e traffic outflux: no. of cars exiting highway per second

e traffic in-flight: no. of cars traveling on highway

—— at time instance ¢

California Dept. of Transportation (Caltrans)

CS 536 Park

Water faucet and sink:
e traffic influx: water influx per second
e traffic outflux: water outflux per second

e traffic in-flicht: water level in sink

— “congestion?”

FhT

faucet.com

Thermostat . ..

CS 536

Park

802.11b WLAN:

e Throughput

55 T T T T T T T
node 2 —=—
node5 —x—
node 10 —e—
node 20 —+—
node 30 —*—
5_node50+ o—6—6—9—-6-—9g o060 o
node 100 —=—
0
IS]
2
3 45f
ey
(o]
>
o
o
|_
IS
9
o 4y
)
Q
<
=
35 | g3 885885 585558 2
3 1 1 1 1 1 1 1

35 4 45 5 55 6

Offered Load (Mb/s)

—— unimodal or bell-shaped

—— recall: less pronounced in real systems

CS 536 Park

802.11b WLAN:

e (Collision

70 T T T T T T T
node 2 —=—
node5 —x—
node 10 —o— 1 I M S T T T £
60 b node 20 —+— i
node 30 —x—
node 50 —e—
node 100 —=—
50]
S
P
= 40 7
©
Qo
e
o
c
.330‘ o—6—0—-o—6—6—6——06—"- o 7
=
@)
20 +]
10 /]
~—
0 1 1 1 1

Offered Load (Mb/s)

—— underlying cause of unimodal throughput

CS 536 Park

What we can regulate or control:

— traffic influx rate A(t)

Ex.:

e Faucet knob in water sink
e Temperature needle in thermostat

e Cars entering onto highway

e Traffic sent by UDP or TCP

What we cannot control: the rest
— except in the long run: bandwidth planning
— does scheduling help?

— Kleinrock’s conservation law: “zero-sum pie”

CS 536 Park

How does in-flight traffic or load Q(t) vary?

At time t + 1:

Qt+1) = Q(t) + Alt) — ()

e (Q(t): what was there to begin with

o \(t

)
e (t): what newly exited (delivered to applications)
) -

o \(t

e (Q(t) cannot be negative

— Q(t+ 1) =max{0,Q(t) + \(t) — ~(t)}

® missing item?

what newly arrived

v(t): net influx

CS 536 Park

Goal: Want to keep system in “good/desirable” state

Ex.: If A(t) > ~(t) for all time then

Q(t) 00 as t— o0

—— water level in sink grows and grows
—— water sink has finite “buffer” capacity, overflows

— want to keep water level stable; how?

Control actions:

e [f water level is too high, close faucet

e If water level is too low, open faucet

—— feedback control

—— “state of system”: water level

CS 536 Park

Pseudo Real-Time Multimedia Streaming

— e.g., RealPlayer, Rhapsody, Internet radio
— “pseudo” because of prefetching trick
—— application is given headstart: few seconds

— why?
Goal: fill buffer & prevent from becoming empty

Method:
e prefetch X seconds worth of data (e.g., audio/video)

e initial delayed playback: penalty of pseudo real-time

e keep fetching audio/video data such that X seconds
worth of future data resides in receiver’s buffer

— allows hiding of spurious congestion
— user: continuous playback experience

— can it work if bandwidth < app data rate?

CS 536 Park

Pseudo real-time traffic control architecture:

Sender Recealver

A (t) Buffer Y

Qo QW

e (Q(t): current buffer level
e ()*: desired buffer level

e ~v: throughput, i.e., playback rate

— e.g., for video 24 frames-per-second (fps)

Goal: vary A(t) such that Q(t) ~ Q*
— don’t buffer too much (memory cost)

— don’t buffer too little (bumpy road)

CS 536 Park

Basic idea:
e if Q(t) = Q" do nothing
o if Q(t) < QQF increase A(t)
o if Q(t) > Q" decrease A(t)
— “control law”

— thermostat control (same as water faucet)

Protocol implementation:

e control action undertaken at sender
— smart sender/dump receiver
— when might the opposite be better?
e receiver informs sender of Q* and Q(t)
— feedback packet (“control signaling”)
— or just Q@ — Q(¢)

— or just up/down (binary)

CS 536 Park

Other applications:

Router congestion control
— active queue management (AQM)
e receiver is a router

e () is desired buffer occupancy/delay at router

e router throttles sender(s) to maintain Q*

— similar to old source quench message (ICMP)

—— considered too much messaging overhead

CS 536 Park

Slightly modified Internet standard:
— ECN (explicit congestion notification)

e two bits in [Pv4 TOS field
— ECT: ECN capable transport (bit 6)

— CE: congestion experienced (bit 7)

e congested router marks ECT
e supported in most routers, default not turned on

e requires TCP sender /receiver changes

Also proposed to throttle denial-of-service attack traffic
—— push-back

— good guy vs. bad guy problem

CS 536 Park

Key question in feedback congestion control: how much
to increase or decrease \(t)

— “control problem”
—— different specific manifestation

—— TCP has its own specific rule

Desired state of the system:

— 1l.e., target operating point

want: Q(t) = Q" and A(t) = v

Start from:

— empty buffer and no sending rate at start

e, Qt)=0and A(t)=0

CS 536 Park

Time evolution (or dynamics): track Q(t) and A(t)

Q)
Q* A N T TN
} } } } } } } } } } } } } t
1 2 3 45 6 7 8 9 1011 12
A
y S N < = e S
t

1 2 3 456 7 8 9 1011 12

CS 536 Park

Congestion control methods: A, B, C and D

Method A:
o if Q(t) = Q" then \(t+ 1) «— A(¢)
o if Q(t) < Q" then A(t+1) — A(t) +a
o if Q(t) > Q" then A(t+1) — A(t) —a
where a > 0 is a fixed parameter

—— linear increase and linear decrease
Question: does it work?

Example:
o ()" =100
o v =10
e Q(0)=0
e \0)=0

eaq—1

CS 536 Park

250 T T T
Load Evolution ————
Target --———-----
200 |- —
150
=]
<
o
—
100 |—t--f-f-t-f-A-4--F-F-t-f-{-4----+-F-1-1-
50 —
O 1 1 1 1
o 100 200 300 400 500
Time
30 T T T T
Lambda Evolution ————
Gamma --------—
<
]
=
=
S
—

100 200 300 400 500
Time

CS 536 Park

With a = 0.5:

250 T

T T
Load Evolution ———
Target ----——----

200

150
]
I3+
o
—
100
50
(0]
(0] 100 200 300 400 500
Time
30 T T T
Lambda Evolution
Gamma ------—--
25 —
(4]
=]
e
=
(3]
J—

o 100 200 300 400 500
Time

CS 536 Park

With a = 3:

250 T T T T
Load Evolution
Target --—-————-—--
200 [—
150 H ‘
]
<
o
—
100 (- — - — - — ———————— -
50 |+ —
O 1 1 1 1
o 100 200 300 400 500
Time
30 T T T
Lambda Evolution
Gamma --------—
25
20
(4%}
=
= 15
(3~}
J—
10 - 119 - FT --rrrr
5 L
O 1 1 1 1
o 100 200 300 400 500

Time

CS 536 Park

With a = 6:

250 T T T T
Load Evolution ———
Target --—-————-—--
200 —
150
]
<
o
—
O T T
50 —
O 1 1 1 1
o 100 200 300 400 500
Time
30 T T T
| ammbda Bvolutian
Gamma [1-r11-
25 H —
20 IH H
(4%}
=
= 15 H —
(3~}
J—
10 |-HHATHT AR THTHTH A ER AT AT ATH T A
5 | L
O 1
o 100 200 300 400 500

Time

CS 536 Park

Remarks:

e Method A isn’t that great no matter what a value is
used

— keeps oscillating
e Actually: would lead to unbounded oscillation if not

for physical restriction A(t) > 0 and Q(t) > 0

—— easily seen: start from non-zero buffer

— e.g., Q(0) =110

CS 536 Park

With a = 1, Q(0) = 110, A(0) = 11:

250 T T T
Load Evolution ————
Target --———-----
200 |- —
150
]
<
o
J—
100
50
o 1 1 1 1
o 20 40 60 80 100
Time
30 T T T T
Lambda Evolution ————
Gamma --—-—--—--—
25 —
<
]
e
=
<
—

Time

CS 536 Park

Method B:
o if Q(t) = Q" then A\t + 1) « (1)
o if Q(t) < Q" then A(t+1) — A(t) +a
o if Q(t) > Q" then A\(t +1) «— d - A(¢)

where a > 0 and 0 < 0 < 1 are fixed parameters

Note: only decrease part differs from Method A.

—— linear increase with slope a
—— exponential decrease with backoff factor ¢

— e.g., binary backoff in case = 1/2

Similar to Ethernet and WLAN backoff

—— question: does it work?

CS 536

Park

Witha=1,8 =1/2:

250

200

150

Load

100

50

T T
Load Evolution ————
Target --—-——-----

o 40 80 120 160 200

Time

30

Lambda

T T T
Lambda Evolution ————
Gamma --------

200

Time

CS 536 Park

With a =3, 6 = 1/2:

250 T T T
Load Evolution ————
Target --—-——-----
200 |- —
150
]
<
o
J—
100
50
o
(@) 40 80 120 160 200
Time
30 T T T T
Lambda Evolution ————
Gamma --------
25 —
20 H —
<
=
= 15
<
—
10 —t==Ft-Ft-t4-1t-F-rt1-t-F-Ft-t-F-Ft-t-F1-
5
O 1 1 1
o 40 80 120 160 200

Time

CS 536

Park

Witha =1, =1/4:

250

200

150

Load

100

50

T T
Load Evolution ————
Target --—-——-----

o 40 80 120 160 200

Time

30

Lambda

T T T
Lambda Evolution
Gamma --------

40 80 120 160 200
Time

CS 536 Park

Witha =1, § = 3/4:

250 T T T
Load Evolution ————
Target --—-——-----
200 |- —
150 - —
]
<
o
J—
100
50
o
(@) 40 80 120 160 200
Time
30 T T T T
Lambda Evolution
Gamma --------
25 —
20 —
<
=
= 15 —
<
—
10 [—f---t-——f-—f——f-—t——F-——T-——f-——t-—F-—F—-—1-
5
O 1 1 1 1
o 40 80 120 160 200

Time

CS 536 Park

Note:
e Method B isn’t that great either

e One advantage over Method A: doesn’t lead to un-
bounded oscillation

— note: doesn’t hit “rock bottom”
— due to asymmetry in increase vs. decrease policy

— typical “sawtooth” pattern

e Method B is used by TCP

— linear increase/exponential decrease

— additive increase/multiplicative decrease (AIMD)

Question: can we do better?

—— what “freebie” have we not utilized yet?

CS 536 Park

Method C:
At +1) — Alt) +e(Q" — Q(1))

where € > 0 is a fixed parameter

Tries to adjust magnitude of change as a function of the
gap Q" — Q(?)

—— incorporate distance from target QQ*

— before: just the sign (above/below)

Thus:
o if * — Q(t) > 0, increase A(t) proportional to gap
o if * — Q(t) < 0, decrease A(t) proportional to gap

Trying to be more clever. . .

—— bottom line: is it any good?

CS 536 Park

With € = 0.1;

250 T T
Load Evolution
200 |-
150 -
]
<
o
—
100
50 —
O 1 1 1
o 50 100 150 200
Time
30 T T
Lambda Evolution ————
Gamma ------—--
25 K —
20 -
(4]
=
= 15 [
(3]
J—
10 [—4----4--F--F-t--7-1--4--r--F-1--F-4--4--r-
5 L
O 1 1
o 50 100 150 200

Time

CS 536 Park

With € = 0.5;

250 T T
Load Evolution
200
150
]
<
o
—
100
50 [+ —
O 1 1 1
o 50 100 150 200
Time
30 T T N T
a*mlﬁ dz% EL/O ut|t)n
Samma||--q--1r-
25 H —
20 H —
(4]
=
= 15 H —
(3~}
J—
10 +------1 H=—Ft-t4-—-F-tt-A-Ft-44--FF-1t4--1
5 H -
O 1 1
o 50 100 150 200

Time

CS 536 Park

Answer: no

— looks good but looks can be deceiving

Time to try something strange
— any (crazy) ideas?

— good for course project (assuming it works)

CS 536 Park

Odd looking modification to Method C:

Method D:
At +1) — A(t) +e(Q" = Q(t) — BAE) —)
where € > 0 and 8 > 0 are fixed parameters
— additional term —B(\(t) —)

—— what’s going on?

Sanity check: at desired operating point Q(t) = Q* and
A(t) = 7, nothing should move

—— check with methods A, B and C
—— fixed-point property

—— what about Method D?

Now: does Method D get to the targe fixed point?

CS 536

Park

With e = 0.2 and 5 = 0.5:

250

200

150

Load

100

50

o

O 5 10 15 20 25 30 35

I_Ioacli E\/IolultionI
Target

Time

40 45

50

30

25

20

15

Lambda

10

I Larlnbdla Elvolultiorll

(o]

5 10 15 20 25 30
Time

35 40

as

50

CS 536 Park

With £ = 0.5 and 8 = 1.1:

250 T T T T T T T T
Load Evolution ————
Target --———-—---
200 |- —
150 - —
=]
<
o
—
100
50 —
O 1 1 1 1 1 1 1 1 1
O 5 10 15 20 25 30 35 40 45 50
Time
30 T T T T T T T T T
Lambda Evolution
Gamma --------
25 —
20 —
<
=
= 15 —
S
—
10
5 p—
O 1 1 1 1 1 1 1 1 1

(@) 5 10 15 20 25 30 35 40 45 50
Time

CS 536

Park

With e = 0.1 and 5 = 1.0:

250

200

150

Load

100

50

o

I_Ioacli E\/IolultionI
Target

O 5 10 15 20 25 30 35 40 45

Time

50

30

25

Lambda

ILarlnbdla Elvolultiorll
Gamma

5 10 15 20 25 30 35
Time

40 as

50

CS 536 Park

Remarks:
e Method D has desired behavior
e [s superior to Methods A, B, and C
e No unbounded oscillation

e In fact, dampening and convergence to desired oper-
ating point

— converges to target operating point (Q*,)
lim (Q(1), A1) = (Q",
— asymptotic stability
e Starting point (Q(0), A(0)) issue:
— if target is reached from anywhere: global stability
—s if target is reached when nearby: local stability

— want global stability

CS 536 Park

Why does it work?

What is the role of the —G(A(t) —) term in the control
lawr:

At +1) = Alt) +e(Q" — Q(t)) — BA) —)

Need to look beneath the hood . ..
—— do you care about the engine or just the exterior?
—— are you “deep” or superficial?

—— answer: let’s try to be both

