CS 536 Park

CONGESTION CONTROL

Phenomenon: when too much traffic enters into system,
performance degrades

— excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does
not occur

— congestion control

Need to understand:
e What is congestion?

e How do we prevent or manage it”
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Traffic influx/outflux picture:

M f'
< Network w} =) traffic outflux
~

) N

traffic in—flight

traffic influx

\\ 1 //

o traffic influx: A(¢) “offered load”
— rate: bps (or pps) at time ¢

o traffic outflux: v(¢) “throughput”
— rate: bps (or pps) at time ¢

e traffic in-flight: Q(¢)

— volume: total packets in transit at time ¢
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Examples:

Highway system:
e traffic influx: no. of cars entering highway per second
e traffic outflux: no. of cars exiting highway per second

e traffic in-flight: no. of cars traveling on highway

—— at time instance ¢

California Dept. of Transportation (Caltrans)
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Water faucet and sink:
e traffic influx: water influx per second
e traffic outflux: water outflux per second

e traffic in-flicht: water level in sink

— “congestion?”

FhT

faucet.com

Thermostat . ..
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802.11b WLAN:

e Throughput

55 T T T T T T T
node 2 —=—
node5 —x—
node 10 —e—
node 20 —+—
node 30 —*—
5_node50+ o—6—6—9—-6-—9g o060 o
node 100 —=—
0
IS]
2
3 45f
ey
(o]
>
o
o
|_
IS
9
o 4y
)
Q
<
=
35 | g3 885885 585558 2
3 1 1 1 1 1 1 1

35 4 45 5 55 6

Offered Load (Mb/s)

—— unimodal or bell-shaped

—— recall: less pronounced in real systems
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802.11b WLAN:

e (Collision
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—— underlying cause of unimodal throughput
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What we can regulate or control:

— traffic influx rate A(t)

Ex.:

e Faucet knob in water sink
e Temperature needle in thermostat

e Cars entering onto highway

e Traffic sent by UDP or TCP

What we cannot control: the rest
— except in the long run: bandwidth planning
— does scheduling help?

— Kleinrock’s conservation law: “zero-sum pie”
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How does in-flight traffic or load Q(t) vary?

At time t + 1:

Qt+1) = Q(t) + Alt) — ()

e (Q(t): what was there to begin with

o \(t

)
e (t): what newly exited (delivered to applications)
) -

o \(t

e (Q(t) cannot be negative

— Q(t+ 1) =max{0,Q(t) + \(t) — ~(t)}

® missing item?

what newly arrived

v(t): net influx
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Goal: Want to keep system in “good/desirable” state

Ex.: If A(t) > ~(t) for all time then

Q(t) 00 as t— o0

—— water level in sink grows and grows
—— water sink has finite “buffer” capacity, overflows

— want to keep water level stable; how?

Control actions:

e [f water level is too high, close faucet

e If water level is too low, open faucet

—— feedback control

—— “state of system”: water level
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Pseudo Real-Time Multimedia Streaming

— e.g., RealPlayer, Rhapsody, Internet radio
—  “pseudo” because of prefetching trick
—— application is given headstart: few seconds

— why?
Goal: fill buffer & prevent from becoming empty

Method:
e prefetch X seconds worth of data (e.g., audio/video)

e initial delayed playback: penalty of pseudo real-time

e keep fetching audio/video data such that X seconds
worth of future data resides in receiver’s buffer

— allows hiding of spurious congestion
— user: continuous playback experience

— can it work if bandwidth < app data rate?
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Pseudo real-time traffic control architecture:

Sender Recealver

A (t) Buffer Y

Qo QW

e (Q(t): current buffer level
e ()*: desired buffer level

e ~v: throughput, i.e., playback rate

— e.g., for video 24 frames-per-second (fps)

Goal: vary A(t) such that Q(t) ~ Q*
— don’t buffer too much (memory cost)

— don’t buffer too little (bumpy road)
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Basic idea:
e if Q(t) = Q" do nothing
o if Q(t) < QQF increase A(t)
o if Q(t) > Q" decrease A(t)
—  “control law”

— thermostat control (same as water faucet)

Protocol implementation:

e control action undertaken at sender
— smart sender/dump receiver
— when might the opposite be better?
e receiver informs sender of Q* and Q(t)
— feedback packet (“control signaling”)
— or just Q@ — Q(¢)

— or just up/down (binary)
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Other applications:

Router congestion control
— active queue management (AQM)
e receiver is a router

e () is desired buffer occupancy/delay at router

e router throttles sender(s) to maintain Q*

— similar to old source quench message (ICMP)

—— considered too much messaging overhead
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Slightly modified Internet standard:
— ECN (explicit congestion notification)

e two bits in [Pv4 TOS field
— ECT: ECN capable transport (bit 6)

— CE: congestion experienced (bit 7)

e congested router marks ECT
e supported in most routers, default not turned on

e requires TCP sender /receiver changes

Also proposed to throttle denial-of-service attack traffic
—— push-back

— good guy vs. bad guy problem
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Key question in feedback congestion control: how much
to increase or decrease \(t)

— “control problem”
—— different specific manifestation

—— TCP has its own specific rule

Desired state of the system:

— 1l.e., target operating point

want: Q(t) = Q" and A(t) = v

Start from:

— empty buffer and no sending rate at start

e, Qt)=0and A(t)=0
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Time evolution (or dynamics): track Q(t) and A(t)
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Congestion control methods: A, B, C and D

Method A:
o if Q(t) = Q" then \(t+ 1) «— A(¢)
o if Q(t) < Q" then A(t+1) — A(t) +a
o if Q(t) > Q" then A(t+1) — A(t) —a
where a > 0 is a fixed parameter

—— linear increase and linear decrease
Question: does it work?

Example:
o ()" =100
o v =10
e Q(0)=0
e \0)=0

eaq—1
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With a = 0.5:
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With a = 3:
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With a = 6:
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Remarks:

e Method A isn’t that great no matter what a value is
used

— keeps oscillating
e Actually: would lead to unbounded oscillation if not

for physical restriction A(t) > 0 and Q(t) > 0

—— easily seen: start from non-zero buffer

— e.g., Q(0) =110



CS 536 Park

With a = 1, Q(0) = 110, A(0) = 11:
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Method B:
o if Q(t) = Q" then A\t + 1) « (1)
o if Q(t) < Q" then A(t+1) — A(t) +a
o if Q(t) > Q" then A\(t +1) «— d - A(¢)

where a > 0 and 0 < 0 < 1 are fixed parameters

Note: only decrease part differs from Method A.

—— linear increase with slope a
—— exponential decrease with backoff factor ¢

— e.g., binary backoff in case = 1/2

Similar to Ethernet and WLAN backoff

—— question: does it work?
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Witha=1,8 =1/2:
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With a =3, 6 = 1/2:
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Witha =1, =1/4:
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Witha =1, § = 3/4:
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Note:
e Method B isn’t that great either

e One advantage over Method A: doesn’t lead to un-
bounded oscillation

— note: doesn’t hit “rock bottom”
— due to asymmetry in increase vs. decrease policy

— typical “sawtooth” pattern

e Method B is used by TCP

— linear increase/exponential decrease

— additive increase/multiplicative decrease (AIMD)

Question: can we do better?

—— what “freebie” have we not utilized yet?
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Method C:
At +1) — Alt) +e(Q" — Q(1))

where € > 0 is a fixed parameter

Tries to adjust magnitude of change as a function of the
gap Q" — Q(?)

—— incorporate distance from target QQ*

— before: just the sign (above/below)

Thus:
o if * — Q(t) > 0, increase A(t) proportional to gap
o if * — Q(t) < 0, decrease A(t) proportional to gap

Trying to be more clever. . .

—— bottom line: is it any good?
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With € = 0.1;
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With € = 0.5;
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Answer: no

— looks good but looks can be deceiving

Time to try something strange
— any (crazy) ideas?

— good for course project (assuming it works)
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Odd looking modification to Method C:

Method D:
At +1) — A(t) +e(Q" = Q(t) — BAE) — )
where € > 0 and 8 > 0 are fixed parameters
— additional term —B(\(t) — )

—— what’s going on?

Sanity check: at desired operating point Q(t) = Q* and
A(t) = 7, nothing should move

—— check with methods A, B and C
—— fixed-point property

—— what about Method D?

Now: does Method D get to the targe fixed point?
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With e = 0.2 and 5 = 0.5:
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With £ = 0.5 and 8 = 1.1:
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With e = 0.1 and 5 = 1.0:
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Remarks:
e Method D has desired behavior
e [s superior to Methods A, B, and C
e No unbounded oscillation

e In fact, dampening and convergence to desired oper-
ating point

— converges to target operating point (Q*, )
lim (Q(1), A1) = (Q",
— asymptotic stability
e Starting point (Q(0), A(0)) issue:
— if target is reached from anywhere: global stability
—s if target is reached when nearby: local stability

— want global stability
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Why does it work?

What is the role of the —G(A(t) — ) term in the control
lawr:

At +1) = Alt) +e(Q" — Q(t)) — BA) — )

Need to look beneath the hood . ..
—— do you care about the engine or just the exterior?
—— are you “deep” or superficial?

—— answer: let’s try to be both



