

Final step: OFDM

- how to find n mutually orthogonal sinusoids over finite time interval τ
- what are the n carrier waves
- what is time interval τ

Method: choose harmonics of base frequency.

- given base frequency f
- its harmonics: integer multiples of f
- i.e., $f, 2f, 3f, \dots$

Set-up for OFDM:

Assume system is constrained to operate within frequency band f_a and f_b .

→ e.g., reliability for wired media

→ e.g., regulations for wireless media

Gap between f_a and f_b , $W = f_b - f_a$ (Hz), also called bandwidth

→ gap W will be important for system design

→ not absolute frequency f_a per se

For n users: choose n EM waves with frequencies

$$f_a + \frac{W}{n}, f_a + 2\frac{W}{n}, \dots, f_a + n\frac{W}{n}$$

→ note: base frequency is bandwidth W

Example: for both [0.5 GHz, 0.7 GHz] and [5 GHz, 5.2 GHz], bandwidth W is

→ the same: 0.2 GHz

Carrier waves: for $n = 20$ users $W/n = 10$ MHz

→ carrier waves for [5 GHz, 5.2 GHz]

→ 5.010 GHz, 5.020 GHz, ..., 5.190 GHz, 5.2 GHz

Note: ignore absolute frequency $f_a = 5$ GHz

→ what matters: base frequency 0.010 GHz

What about time interval τ ?

Time interval τ :

$$\tau = \frac{n}{W}$$

→ called symbol period

→ does not depend on f_a

For [5 GHz, 5.2 GHz] and $n = 20$:

→ $\tau = 20 / 10 \text{ MHz} = 2 \mu\text{s}$ (microsecond)

→ $n = 20$ carrier waves are mutually orthogonal over $\tau = 2\mu\text{s}$

→ $[0, 2\mu\text{s}], [2\mu\text{s}, 4\mu\text{s}], [4\mu\text{s}, 6\mu\text{s}], \dots, [38\mu\text{s}, 40\mu\text{s}]$

Per carrier wave: send one bit per symbol period

→ same for slow and fast carrier waves

→ 0.5 Mbps per carrier

→ total for $n = 20$: 10 Mbps

Summary:

- every EM wave transmits 1 bit over a τ interval
 - assures orthogonality for all carrier waves
- for [5 GHz, 5.2 GHz] example, slower 5.010 GHz carrier wave and faster 5.2 GHz wave transmit bits at same speed (bps)
 - 1 bit per τ
 - 1 bit per $2\mu\text{s}$
- thus bandwidth (in bps) per carrier wave is $1/\tau$ (bps)
 - assuming AM with two levels
 - what about four levels?
- total link bandwidth across all n users
 - n/τ (bps)

Implication:

Does increasing n (i.e., more parallel “lanes”) increase speed (bps)?

→ total link bandwidth (bps) = $n/\tau = n/(n/W) = W$

→ does not depend on n ; bandwidth (bps) only depends on W

→ nor does it depend on absolute frequency f_a

Captured by Shannon’s fundamental result (called 2nd theorem).

→ bandwidth (bps) depends on bandwidth W (Hz)

→ additionally: role of signal strength and noise

Conservation law at play:

- increased parallelism n is offset by slow down of carrier waves due to τ
- to satisfy orthogonality
- no free lunch

Advantage of OFDM over FDM

- higher spectral efficiency: can transmit more bits in parallel
- clock used to compute and transmit bits (i.e., time interval τ) can be slow
 - i.e., determined by gap $W = f_b - f_a$, not absolute frequency f_a
 - final step of transmission: multiply carrier wave by f_a
 - shifts EM wave from $[W/n, W]$ to $[f_a + W/n, f_a + W]$