
CS 422 Park

Usefulness of linear algebra for sending bits.

Example: three users Alice, Bob, Mira

→ cell tower wants to send each user 1 bit

→ in parallel; not TDMA

Four steps:

(i) sender (i.e., cell tower): hide the 3 bits to be sent to
Alice, Bob, Mira in 3-D vector

→ 3-D because 3 receivers

→ linear algebra

(ii) sender: transmit 3-D vector as EM wave

→ called CDMA (3G cellular technology)

→ ignore since not relevant



CS 422 Park

(iii) receiver (i.e., Alice, Bob, Mira): translate received

EM into 3-D vector

→ Alice, Bob, Mira hear the same EM wave: broad-
cast

→ ignore EM to 3-D vector translation

(iv) receiver: Alice decodes her bit from 3-D vector

→ same goes for Bob and Mira

→ linear algebra



CS 422 Park

Example (cont.): assign each user a 3-D vector called

code vector

→ x = (x1, x2, x3) for Alice

→ y = (y1, y2, y3) for Bob

→ z = (z1, z2, z3) for Mira

Rule: choose x, y, z so that

→ basis of 3-D space

→ mutually orthogonal

Recall: x and y are orthogonal (at right angle geometri-
cally speaking) if their dot product is 0.

→ x ◦ y = x1y1 + x2y2 + x3y3 = 0

Dot product measures how similar two vectors are.

→ 0 means maximally dissimilar



CS 422 Park

Example (cont.): three mutually orthogonal vectors

→ Alice: (1,-2,1)

→ Bob: (3,5,7)

→ Mira: (19,4,-11)

We will allow positive and negative values.

→ not worry about converting to bits

The three code vectors are stored in Alice, Bob, Mira’s
smart phones.

→ their secret key

Suppose the 3 bits to be sent to Alice, Bob, Mira are:

• Alice: 1

• Bob: 0

• Mira: 1



CS 422 Park

We will use +1 to mean bit value 1, -1 to mean bit value

0.

→ convenient but not necessary

Step (i): cell tower computes 3-D vector by multiplying

Alice’s code vector by +1, Bob’s code vector by -1, Mira’s
code vector by +1

→ since bits to send are 1, 0, 1

Then add the result to yield 3-D vector:

(+1)(1,−2, 1)+(−1)(3, 5, 7)+(+1)(19, 4,−11) = (17,−3,−17)

Step (ii): cell tower transmits (17,-3,-17) via EM broad-

cast

→ ignore how (17, -3, -17) is translated into electromag-
netic wave



CS 422 Park

Step (iii): Alice’s smartphone NIC converts EM wave into

3-D vector (17, -3, -17).

→ same for Bob and Mira’s smart phones

Step (iv): Alice retrieves her bit from 3-D vector (17, -3,
-17) by performing dot product with her code vector (1,
-2, 1):

→ (17,−3,−17) ◦ (1,−2, 1) = 17 + 6− 17 = 6 > 0

→ positive means bit value 1

→ negative means bit value 0

Same for Bob with his code vector (3,5,7) and Mira with
her code vector (19,4,-11):

For Bob:

→ (17,−3,−17) ◦ (3, 5, 7) = 51− 15− 119 = −83 < 0

→ hence Bob received bit 0



CS 422 Park

For Mira:

→ (17,−3,−17) ◦ (19, 4, 11) = 323− 12 + 119 = 187 =
498 > 0

→ hence Mira received bit 1

Why does this work?

→ consider crucial role of orthogonality



CS 422 Park

Generalize: to send 1 bit per user to n users in parallel

• Set-up: assign n orthogonal code vectors in n-dimensional
vector space

→ x1,x2, . . . ,xn

to n users

• Sender: to send n data bits a1, a2, . . . , an (+1 for 1,
-1 for 0) in parallel, compute

→ z = a1x1 + a2x2 + · · · + anxn

→ z is an n-dimensional vector that hides n bits in
its coefficients (called spectra)

→ convert z into analog signal and transmit to all
receivers



CS 422 Park

• Receiver: to decode user i’th bit ai, receiver computes

dot product with code vector xi

→ z ◦ xi = ai(xi ◦ xi) = ai × positive constant

→ by orthogonality

To send not single bit per user but a stream of bits per

user:

→ do the above sequentially in the parallel bit stream

Problem solved?



CS 422 Park

Limitations: heavy lifting from translating 3-D vectors to

EM waves, and vice versa, remains.

→ challenging

Instead: go directly from bits to EM waves.

→ make EM waves our basis vectors

→ use multiple frequencies to carry multiple bit streams

→ called carrier frequencies

→ FDM (frequency division multiplexing)

Our goal:

→ understand limitations of FDM

→ mitigate using OFDM (orthogonal FDM)


