CS 422 Park

LINK LAYER: BASIC TECHNIQUES

Performance Metrics
Link speed unit: bps

— assume some physical layer that provides bandwidth
bps

— e.g., TDMA, FDMA, OFDMA
Simplest case: point-to-point link

width B

/

" @
[
length L

e R
.

O

— wired or wireless

— bandwidth B bps, length L (unit: distance or time)

CS 422 Park

How long does it take to send bits?
— completion time (unit: msec)

— time elapsed between sending first bit and receiving
last bit

e Single bit:

— = L/SOL (lower bound)

— propagation delay or latency

— exact value depends on physical layer
e Multiple, say .S, bits:

— ~ L/SOL + S/B

— latency 4+ transmission time

— logic?

CS 422 Park

Examples:
e S = 8000 bits, B =1 Gbps, L = 2000 miles

2000/186000 + 8000/109
~ 10.75 + 0.008 = 10.758 msec

— latency dominates transmission time
e S = 8000 bits, B =1 Mbps, L = 1 mile

1/186000 + 8000/10°
~ 0.005 + 8 = 8.005 msec

— transmission time dominates latency

Be aware of which dominates when estimating rough com-
pletion time

— satellite links?

— data center links?

CS 422 Park

Links are unreliable
— bits can flip or unrecognizable

— for many network applications: require reliable com-

munication

Two approaches to achieving reliable data transmission

over unreliable links
e resend missing /corrupted bits
— reactive
e send data in redundant fashion

— proactive

CS 422 Park

Reactive approach: ARQ (Automatic Repeat reQuest)

— use retransmission with sequence numbers and timers

— wired /wireless links

Proactive approach: FEC (forward error correction)

— transmit redundant information

Pros and cons?

CS 422 Park

Example: simple methods for error detection and correc-
tion

— single bit flip in 7-bit ASCII character

Error detection

— add parity bit: odd or even

Error detection

— 3-fold duplication and majority voting

Overhead?

CS 422 Park

Components of ARQ:
o acknowledgment (ACK)
— receiver: “I got it”
e sequence number
— receiver: “I got packet 15”
e timer
— estimate how long getting ACK should take
e buffer
— sender keeps copy of data in buffer for resend

data

I
timer Q O

@ ACK

CS 422

Park

Simplest case of ARQ: stop-and-wait

— handle one packet (i.e., frame) at a time

timeout

timeout

time

time

timeout

timeout

time

time

CS 422 Park

[ssue of RT'T (Round-Trip Time) and timer management:
e what is proper value of timer?
— RT'T estimation
e casier for single link
— RTT is well-behaved
e more difficult for multi-hop path in internetwork

— latency + queueing/buffering

Does stop-and-wait need sequence numbers?

CS 422 Park

Usefulness of stop-and-wait:
— simple throughput formula
— reliable throughput (bps)

= data bits / total time

— pure data bits: do not count retransmissions

Example: file size S = 8M bits, total bits sent = 10M
bits, completion time = 100 msec

— raw throughput = 107/0.1 = 100 Mbps
— reliable throughput = 8000000/0.1 = 80 Mbps

— ACK traffic not counted: unidirectional

CS 422 Park

Formally: stop-and-wait (reliable) throughput
e frame or packet size (bits)

e RTT (round-trip time)

— throughput = frame size / RTT

Throughput decreases with increasing RT'T
— far away is not good

— property of many protocols including TCP

Another important problem: keep the “pipe” full
— stop-and-wait: one frame per RT'T

— analogy: use one semi-truck to haul billions of tons of
goods north to south on 165

CS 422 Park

Example: link bandwidth 1 Gbps, 10 msec RT'T
e if frame size 1 KB, then throughput:
— 1024 x 8/0.01 = 0.8192 Mbps

— link utilization: less than 0.1 percent!

e “fatness of pipe”’: delay-bandwidth product
— 1 Gbps x 10 msec = 10 Mbits

— we only sent 8000 Kbits

The larger the bandwidth or delay, the worse the more
underutilized.

How to increase link utilization?

CS 422 Park

Solution 1: increase frame size

— can only go so far
e cxisting standards limit frame size
e large frames can monopolize link

— bully problem

Solution 2: send block of frames to address frame size
limit and bully problem

— sliding window protocol

CS 422 Park

Sliding Window Protocol:

[ssues to be addressed:

e shield application process from reliability management
chore

— exported semantics: continuous data stream
— simple app abstraction: e.g., read system call

e both sender and receiver have limited buffer capacity

— need to plug holes and flush buffer

Dropped

1 2
Sender >< Receiver

EEEEE » EEE

1 2 3 4 5 3 45

CS 422 Park

Simple solution when receiver has infinite buffer capacity:
e sender keeps sending at maximum speed
e receiver informs sender of holes

— “I'm missing this and that”
— called negative ACK

e sender retransmits missing frames

What about positive ACK?

— pros and cons

CS 422 Park

With finite buffers:
e issue of bookkeeping is more involved
— key concern: correctness
e issue of not overflowing receiver buffer

— sending too fast is not good
— sending too slow is not good

— send at just right pace

We will study pacing sending rate (i.e., congestion con-
trol) separately.

— complex problem

— significant impact on throughput

CS 422 Park

Sliding window operation with positive ACK:
— view buffer as a window that slides over data

— data unit: byte or frame

SWS
Sender:

LAR LFS

Receiver: RWS

NEFE LFA

CS 422 Park

Notation:
e SWS: Sender Window Size (sender buffer size)
o RWS: Receiver Window Size (receiver buffer size)
o LAR: Last ACK Received
o LFS: Last Frame Sent
e NFE: Next Frame Expected
e LFA: Last Frame Acceptable

CS 422 Park

Assign sequence numbers to data: byte or frames.

— IDs

Maintain mvariants:

o LFA — NFE 4+ 1 < RWS
o LF'S — LAR+1 < SWS

Sender:

e Receive ACK with sequence number X

e Forwind LAR to X

e Flush buffer up to (but not including) LAR
e Send up to SWS — (LFS — LAR + 1)

e Update LEF'S

CS 422 Park

Recelver:

e Receive data with sequence number Y

e Forwind to (new) first hole & update NFE
— NFE need not be Y + 1

e Send cumulative ACK (i.e., NFE)

e Flush buffer up to (but not including) NFE to appli-
cation

e Update LFA < NFE + RWS — 1

Important variation:
e recelver informs sender RWS

e sender never sends more than RWS

CS 422 Park

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1) /2

— why?

—— recall special case: stop-and-wait

CS 422 Park

Real-world ARQ Performance: TCP

Ex.: Purdue — UCSD

e Purdue (NSL): web server
e UCSD: web client

traceroute to planetlab3.ucsd.edu (132.239.17.226), 30 hops max, 40 byte packets
1 switch-lwsn2133-z1r1l (128.10.27.250) 0.483 ms 0.344 ms 0.362 ms

2 1lwsn-b143-c6506-01-tcom (128.10.127.251) 0.488 ms 0.489 ms 0.489 ms

3 172.19.57.1 (172.19.57.1) 0.486 ms 0.488 ms 0.489 ms

4 tel-210-m10i-0O1-campus.tcom.purdue.edu (192.5.40.54) 0.614 ms 0.617 ms 0.615 ms

5 gigapop.tcom.purdue.edu (192.5.40.134) 1.743 ms 1.679 ms 1.727 ms

6 * *x %

7T ok x %

8 * x x

9 hpr-lax-hpr--nlr-packenet.cenic.net (137.164.26.130) 56.919 ms 56.919 ms 57.658 ms

10 hpr-ucsd-10ge--lax-hpr.cenic.net (137.164.27.165) 60.326 ms 60.198 ms 60.196 ms

11 nodeb-720--ucsd-t320-gw-10ge.ucsd.edu (132.239.255.132) 60.326 ms 60.370 ms 75.130 ms

— RTT ~ 60.5 msec

—— receiver window size: 32 KB

CS 422 Park

10 ‘ ‘ ; ;
1s aggregation ———
(receive window)/(RTT) = 32KB / (60.5ms)
8 - .
B
£
S o :
=
0
%D 4 - o /“ﬂ»—f*ﬁ\“./'\kffa— — |
g //\
=
2 - .
0
0 2 4 6 8 10 12 14 16
time (second)
| . X . Kk i) N |
0 ql (]r2 ;, 0"% . qd - Qi
I P A . NN | | |
03 - o b U5 —09 -
£ I .}) " Py
1 - 1.1 12 13 14 5
e ‘ — ‘ — il | —5—t 'y 3
E | | okl | ¥ ¥) ¥ X x % ﬁ
1.5 1‘6 v 1‘7 > I‘R’ ¥ I‘Q 2
LA LA . A L
2 N 2‘1 2‘2 - 2"% - - 2‘4 - 2.5
| Si IR | A ¥ ' L ¥ ' ‘5 L I ¥ ‘l
25 2.6 2.7 2.8 ;, 29 3
T 7 Pl 3 R x X T x R x
| "R’ 'R ‘ X 1
3 3.1 ;, 32 33 34 35
| x wx L) L A) < KT ¥ |
L | 1] - ¥
33 3.6 ;, 37 38 -39 4
I AL .. d, A,]
4 4‘1 _ 4‘2 4"% ~,4‘4 4.5
N N f | I S
4.5 4.6 4.7 4.8 4.9 5

CS 422 Park

Ex.: Purdue — Rutgers

e Purdue: web server

e Rutgers: web client

traceroute to planetlabl.rutgers.edu (165.230.49.114), 30 hops max, 40 byte packets

1 switch-lwsn2133-zl1ril (128.10.27.250) 12.336 ms 0.339 ms 0.362 ms
lwsn-b143-c6506-01-tcom (128.10.127.251) 0.489 ms 0.491 ms 0.488 ms

172.19.57.1 (172.19.57.1) 0.490 ms 0.488 ms 0.489 ms
tel-210-m10i-01-campus.tcom.purdue.edu (192.5.40.54) 0.614 ms 0.615 ms 0.614 ms
switch-data.tcom.purdue.edu (192.5.40.166) 2.864 ms 2.865 ms 2.864 ms
abilene-ul.indiana.gigapop.net (192.12.206.249) 2.988 ms 13.608 ms 3.113 ms
chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 6.740 ms 6.875 ms 6.859 ms
ge-0-0-0.10.rtr.chic.net.internet2.edu (64.57.28.1) 7.113 ms 6.975 ms 6.986 ms
s0-3-0-0.0.rtr.wash.net.internet2.edu (64.57.28.13) 29.349 ms 24.086 ms 23.626 ms
ge-1-0-0.418.rtr.chic.net.internet2.edu (64.57.28.10) 44.786 ms 28.822 ms 28.839 ms
local.internet2.magpi.net (216.27.100.53) 30.723 ms 30.818 ms 30.744 ms
ph1-02-09.backbone.magpi.net (216.27.100.229) 31.045 ms 36.644 ms 30.839 ms
remote.njedge.magpi.net (216.27.98.42) 33.221 ms 33.021 ms 33.087 ms
er01-hill-ext.runet.rutgers.net (198.151.130.233) 33.229 ms 33.207 ms 33.217 ms

© 0 N O O b W N

e e e
S W NN »r O

— RITIT =~ 34 msec

—— recelver window size: 32 KB

CS 422

Park

10 T T . . .
1s aggregation ——+—
(receive window) / (RTT) =32KB / (34ms)
8 - .
B x
£
s o7
=
=
2 4 1
£
2 - .
O 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
time (second)
[« 2 0§ § 7 i" I 7T 7 7 %]
0 = % % Oll — — l'] 2 g i Q.5
7 T N N T %
0.5 Q 09

{%}%%?@%’ﬁﬁ*@,@ﬁ

]

]

~ 7]
|§xxxxx§fffffffg
‘ |

B
%’K

g fﬁﬁl%"?.ﬁﬁr
CF 7 7 7 % 7 % % %7 % Y 1

[I VIR g;i& Xy X, Ky X, ¥, sf s?‘ £
3 35
| !

fﬁfif}yf‘ff@*ﬁﬂﬁ:fx

) 3 4

A A A N B A
|?I§_§§S§§f§f!‘££|

4.6 5

4o
I

3

a9
i)
e

0
O

45

CS 422 Park

Ex.: Purdue — Korea University (Seoul)

e Purdue: web server

e KU: web client

switch-lwsn2133-z1ri1l (128.10.27.250) 0.513 ms 10.061 ms 0.358 ms
lwsn-b143-c6506-01-tcom (128.10.127.251) 0.487 ms 0.476 ms 0.364 ms

172.19.57.1 (172.19.57.1) 0.489 ms 0.475 ms 0.490 ms
tel-210-m10i-01-campus.tcom.purdue.edu (192.5.40.54) 0.613 ms 0.600 ms 0.614 ms
switch-data.tcom.purdue.edu (192.5.40.166) 7.982 ms 7.969 ms 14.596 ms
abilene-ul.indiana.gigapop.net (192.12.206.249) 8.977 ms 7.721 ms 6.857 ms
kscyng-iplsng.abilene.ucaid.edu (198.32.8.81) 36.860 ms 25.873 ms 29.075 ms
dnvrng-kscyng.abilene.ucaid.edu (198.32.8.13) 24.218 ms 23.125 ms 36.317 ms
snvang-dnvrng.abilene.ucaid.edu (198.32.8.1) 47.815 ms 78.440 ms 54.048 ms
losang-snvang.abilene.ucaid.edu (198.32.8.94) 55.080 ms 55.131 ms 60.674 ms
transpac-1-lo-jmb-702.1sanca.pacificwave.net (207.231.240.136) 55.165 ms 55.212 ms 59.1
tokyo-losa-tp2.transpac2.net (192.203.116.146) 175.068 ms 170.832 ms 170.444 ms
tyo-gatel.jp.apan.net (203.181.248.249) 170.488 ms 170.893 ms 171.818 ms
sg-s0-02-622m.bb-v4.noc.tein2.net (202.179.249.5) 277.150 ms 275.966 ms 276.136 ms
kr.pr-v4.noc.tein2.net (202.179.249.18) 278.422 ms 276.486 ms 280.132 ms
61.252.48.182 (61.252.48.182) 276.170 ms 279.606 ms 279.421 ms

202.30.43.45 (202.30.43.45) 271.663 ms 269.492 ms 268.761 ms
honeungl3-seoul.kreonet.net (134.75.120.2) 269.781 ms 269.913 ms 273.516 ms
203.241.173.74 (203.241.173.74) 272.663 ms 278.774 ms 270.902 ms

© 0 N O O b W N =

e e e e N =
© 0 N O Ok W NN+~ O

— RT'T = 292 msec
— long route to Korea (via Singapore)

—— recelver window size: 32 KB

CS 422

Park

0 ‘ — ;
1s aggregation ————
9 (receive window)/(RTT) = 32KB / (292ms) b
8 - .
2 7 f
£
S 6 1
N—
2 st 1
=
2 4t 1
)
£ 3t 1
2 - .
1 ~ f;w«p*ﬁqp:q/&/%;ﬁ\wipqqzq;««m»*wwﬁ«\’
0
0 5 10 15 20 25 30 35 40
time (second)
| l l - l |
0 0.1 02 03 04 Q.5
| = ‘ ‘ ‘ |
s s s ¥ s
05 0.6 0‘ 7 l')‘ 8 ()‘ 9 - 1
| ‘ [‘ ‘ . x x|
1 l‘ 1 l‘ 2 l‘ 3 1‘4 1.5
| ‘ ¥ ‘ ‘ |
1 i‘ l‘ (&) l‘ 7 l‘ 8 l‘ 9 2
L ‘ ‘ ¥ ‘ |
2 > 7‘ 1 7‘ 2 7‘ 3 7‘ 4 2.5
| ‘ ‘ ’ |
25 7‘ (&) * 7‘ 7 7‘ 8 7‘ 9 3
| ‘ L ‘ ‘ H]
3 31 32 33 34 35
| l . l l |
35 3.6 37 38 39 4
| l l T . |
4 4‘ 1 4‘ 2 4‘ 3 4‘4 4.5
| # ‘ ‘ ‘ |
4.5 4.6 4.7 4.8 4.9 5

CS 422 Park

Increase receiver window size: 128 KB

—— 4-fold increase

—_
e

Is aggrégatioﬁ —
(sender window)/(RTT) = 64KB / (292ms)

throughput (Mbps)
S = N W B~ L N N 0 O

0 2 4 6 8 10 12 14 16 18

time (second)

— why only 2-fold throughput increase?

CS 422 Park

Increase receiver window size: 8 MB
—— also Increase sender buffer size to 4 MB

— RTT & 185 msec (short route to Korea)

200
180 F
160
140
120
100 |
80 |
60
40
20

(sender \)vindow)/(RTT) = 4MB / 185ms

throughput (Mbps)

0 5 10 15 20

time (second)

around 90 Mbps
download time for 10 MB file?

can be confused with DoS (denial-of-service) attack

.

why less than 180 Mbps?

