Long Distance Wireless Communication

Principally satellite communication:

- LOS relay
- Effective for broadcast
- Limited bandwidth for multi-access
 - → not scalable for multi-access

Multi-access protocols:

- FDMA + TDMA: dominant
 - → broadband
 - → GSM cellular
- CDMA: e.g., GPS and defense related systems
 - → CDMA cellular (Qualcomm)
- CSMA/CA: impractical due to large RTT
 - → low utilization/throughput

Long-distance wireless communication: effective when broadcasting

 \longrightarrow special applications, e.g., TV, GPS

Short Distance Wireless Communication

Basic communication problem

 \longrightarrow shared frequency spectrum (e.g., 2.4–2.4835 GHz)

- TDMA
- FDMA
- CDMA
- multiple access
- polling

Cellular telephony: frequency & time division

FDMA & TDMA

Ex.: GSM (U.S. IS-136)

• uplink: 890–915 MHz

• downlink: 935–960 MHz

 \rightarrow 25 MHz frequency band

• 125 channels 200 kHz wide each (= $25000 \div 200$)

 \rightarrow FDM portion

- 8 time slots within each channel
 - \rightarrow TDM portion
- total of 1000 possible user channels (= 125×8)
 - \rightarrow 124 × 8 realized
- codec: 13.4 kb/s

Dedicated channels workable because traffic is speech:

- Low bit rate & approximately CBR (constant bit rate)
- Not so for:
 - \rightarrow VBR (variable bit rate), e.g., MPEG video
 - \rightarrow data files (why?)

Cellular telephony: code division

→ same frequency band; different codes

Ex.: IS-95 CDMA

• uplink: 824–849 MHz

• downlink: 869–894 MHz

 $\rightarrow 25$ MHz frequency band

• codec: 9.6 kb/s

Packet radio: ALOHA

- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'

Ex.: ALOHANET

- data network
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

• Norm Abramson (precursor to Ethernet; Bob Metcalfe)

- FM radio carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- bit rate: 9.6 kb/s
- Multiple access method: MA
 - \rightarrow plain and simple

ALOHA protocol:

- send frame (no carrier sense)
- wait for ACK
 - → "collision detection" through explicit ACK
 - \rightarrow different from Ethernet CSMA/CD
- \bullet if timeout, reattempt with probability p
 - \longrightarrow looks familiar...

Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- \longrightarrow bus!
- technically called basic service set (BSS)
- base station: access point (AP)
- mobile stations must communicate through AP

WLAN: ad hoc mode

WLAN: Ad Hoc Network

- → homogeneous: no base station
- → everyone is the same (kind of like KaZaA)
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

- → internetworking between BSS's through APs
- → mobility and handoff
- extended service set (ESS)
- APs are connected by distribution system (DS)

- DS: wireless or wireline
 - → most common: Ethernet switch
- how do APs and Ethernet switches know where to forward frames?
 - → learning bridge: source address discovery
 - → spanning tree: IEEE 802.1 (Perlman's algorithm)

Additional headache: mobility

- → how to perform handoff
- → mobility management at MAC
- → mobility management at IP (Mobile IP)

Examples:

Purdue Univ.: IEEE 802.11b (11 Mbps) WLAN network

- → PAL (Purdue Air Link)
- → partial mobility: MAC roaming
- \longrightarrow no mobile IP
- → but football scores at Ross-Ade through PDAs

Dartmouth College: IEEE 802.11b WLAN (500+ APs)

- \longrightarrow full VoIP
- \longrightarrow free long distance

Seattle, SF, San Diego, Boston, etc.: Wi-Fi communities

- → free Internet access
- → roof-top mesh networks
- \longrightarrow cable & DSL companies don't like it

Graffiti: warchalking

- → some cities
- → benevolent kids with lots of free time

Soon: integrated WLAN + cellular phones

- → use VoIP when near WLAN network
- → use cellular when outside WLAN coverage
- → automatic switch-over

WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz

Non-interference specification:

- each channel has 22 MHz bandwidth
- require 25 MHz channel separation
 - → thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

IEEE 802.11 MAC

- → CSMA/CA with exponential backoff
- \longrightarrow almost like CSMA/CD
- → instead of CD, use CA (collision avoidance)
- \longrightarrow CA is optional (CD is not)

Two modes for MAC operation:

- Distributed coordination function (DCF)
 - \rightarrow multiple access
- Point coordination function (PCF)
 - \rightarrow polling-based priority scheme

CSMA with exponential backoff operation:

Sender:

- MAC (firmware in NIC) receives frame from upper layer
- Check if channel is idle (CS)
 - If busy, goto **Backoff** procedure
 - If idle, wait for DIFS duration, then goto Backoff
- Transmit frame
- Wait for ACK
- If timeout, goto Backoff procedure

Receiver:

- Check if received frame is ok
- Wait for SIFS
- Transmit ACK

Timeline without collision:

Time units:

- SIFS (short interframe space): 10 μ s
- Slot Time: 20 μ s
- DIFS (distributed interframe space): 50 μ s
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)

Backoff:

• If due to timeout, double contention window (CW)

- If due to CS, wait until channel is idle plus an additional DIFS
- Choose random waiting time between [1, CW]
 - \rightarrow CW is in units of slot time
- Decrement CW when channel is idle
- Transmit when CW = 0

Time snapshot with Mira-come-lately:

→ Sue sends to Arnold

Time snapshot with collision (Sue & Mira):

Throughput and collision:

Additional issues with multiple access in wireless media: Hidden station problem:

Hidden Station Problem

- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

Exposed station problem:

Exposed Station Problem

- (1) B transmits to A
- (2) C wants to transmits to D but senses B
 - $\rightarrow C$ refrains from transmitting to D
 - \rightarrow omni-directional antenna

Solution: CA (congestion avoidance)

- → RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send

Hidden station problem: RTS/CTS handshake "clears" hidden area

RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold

 \longrightarrow why not for small data?

Additional optimization: virtual carrier sense

- transmit connection duration information
- stations maintain NAV (network allocation vector)
 - \rightarrow decremented by clock
- if NAV > 0, then do not access even if physical CS says channel is idle

PCF (point coordination function):

- → support for real-time traffic
- Periodically inject contention free period (CFP)
 - \rightarrow after BEACON
- Under the control of point coordinator: AP
 - \rightarrow polling

PIFS (priority IFS):

 \longrightarrow SIFS < Slot Time < PIFS < DIFS

Properties of PCF:

- BEACON period is not precise
 - \rightarrow has priority (PIFS < DIFS) but cannot preempt DCF
- During CFP services stations on polling list
 - \rightarrow delivery of frames
 - \rightarrow polling: reception of frames
 - → must maintain polling list: group membership
- Uses NAV to maintain CFP
- BEACON: separate control frame used to coordinate BSS
 - \rightarrow time stamp, SSID, etc.

IEEE 802.11 wireless LAN standard:

• ratified in 1997: 1 or 2 Mbps using either DSSS or FHSS

- 11 bit chip sequence
- uses IEEE 802 address format along with LLC
- uses 2.4–2.4835 GHz ISM band in radio spectrum
- IEEE 802.11b (High Rate) ratified: 5.5 or 11 Mbps using DSSS only
- others: e.g., IEEE 802.11a at 54 Mbps
 - $\rightarrow 5.725-5.85 \text{ GHz band}$

Bluetooth, 802.16, ...