DIRECT LINK COMMUNICATION II: WIRELESS MEDIA

Current Trend

- WLAN explosion (also called WiFi)
 - \rightarrow took most by surprise
- cellular telephony: 3G/4G
 - → cellular providers/telcos/data in the same mix
- self-organization by citizens for local access
 - \rightarrow free WiFi hot spots
- large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 - \rightarrow part of everyday life
 - \rightarrow difficult to turn back

• boundary between local and wide area wireless blurring

- \rightarrow cellular: long-distance vs. WLAN: local
- \rightarrow 802.16 (WiMax): designed to compete with cellular
- also very short distances ("wireless personal area networks")
 - \rightarrow bluetooth, UWB, Zigbee: in general, 802.15
 - → multi-use: cordless phones, WLANs, etc.
 - \rightarrow 2.4 and 5 GHz spectra: very busy

Integral part of the Internet: where it's happening

- \longrightarrow good news and bad news
- \longrightarrow good old #\$%&? radio technology

Basics of Wireless Communication

Use electromagnetic waves in wireless media (air/space) to transmit information.

- → NIC: air interface
- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna
 - → mainly: microwaves
 - \longrightarrow e.g., 2–66 GHz

Key differences with wired communication:

• increased exposure to interference and noise

- \rightarrow lack of physical shielding
- same frequency spectrum must be shared among all users
- inter-user interference cannot be localized at switch
 - \rightarrow cannot use buffering
 - → problem for QoS (e.g., VoIP)
 - → information is inherently exposed
 - → bad for networking
 - → bad for security
 - → good for convenient access

- signal propagation and variation is more complex
 - \longrightarrow attenuation
 - ----- refraction, absorption, reflection, diffraction
 - → multi-path fading
 - \longrightarrow mobility

Network bandwidth: two extremes

- → high and low bandwidth coexist
- \longrightarrow e.g., 10 Gbps and 11 Mbps
- \longrightarrow here to stay
- → speed mismatch: makes things interesting

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz-300 GHz
- → Microwave: 1 GHz-1 THz
- \longrightarrow Wireless: concentration \sim 0.8 GHz–6 GHz
- \longrightarrow Optical fiber: \sim 200 THz; 25 THz bandwidth

Miscellaneous spectrum allocations (U.S.) & uses:

→ FCC (Federal Communications Commission)

- Voice: 300 Hz-3300 Hz
- AM Radio: 0.535 MHz-1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz-216 MHz, 470 MHz-825 MHz
 - \longrightarrow audio (FM), video (AM)
- GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz
 - \longrightarrow DS-CDMA
 - → 24 satellites (DoD), 10900 miles
 - → navigation service: trilateration

• Cellular telephone: 824 MHz–849 MHz (upstream), 869 MHz–894 MHz (downstream)

- → AMPS: FDM, analog
- \longrightarrow GSM: TDMA, digital
- \longrightarrow IS-95: CDMA, digital
- PCS: 1.85 GHz-1.99 GHz
 - \longrightarrow CDMA, TDMA

- WLAN: IEEE 802.11b 2.4 GHz-2.4835 GHz
 - \longrightarrow DSSS or FHSS with CSMA/CA
 - \longrightarrow same frequency range for 802.11g
- WLAN: Bluetooth 2.4 GHz–2.4835 GHz
 - \longrightarrow FH with TDD
- WLAN: IEEE 802.11a 5.725 GHz-5.850 GHz
 - \longrightarrow OFDM with CSMA/CA
- WiMax: IEEE 802.16 2 GHz-66 GHz
 - \longrightarrow TDMA based

• Satellite: C-band 3.7 GHz-4.2 GHz (downlink), 5.925 GHz-6.425 GHz (uplink)

- \rightarrow FDMA/TDMA
- Satellite: Ku-band 11.7 Ghz-12.2 Ghz (downlink), 14 GHz-14.5 GHz (uplink)
- Many other frequency bands
 - \rightarrow cf. FCC chart

Signal Propagation and Power

Free space loss:

- ullet transmitting antenna: signal power P_{in}
- ullet receiving antenna: signal power P_{out}
- \bullet distance: d
- \bullet frequency: f

$$P_{
m out} \, \propto \, P_{
m in} \, rac{1}{d^2 f^2}$$

→ quadratic decrease in distance & frequency

Design implications:

• effective coverage limited by distance

→ SNR: signal-to-noise ratio

 \longrightarrow SIR: signal-to-interference ratio

spatial coverage by one high-power antenna

spatial coverage by two low-power antennas

 \longrightarrow pros & cons?

- low power output decreases cell size
 - \longrightarrow increased battery life
 - → enables frequency reuse
 - → more antennas required
 - → handoff coordination overhead
 - \longrightarrow e.g., I65 from Lafayette to Indy

Cellular Networks

Hexagonal cells:

- → both affect tiling of the plane
- \longrightarrow why hexagonal?

Frequency reuse: adjacent cells do not use common carrier frequency.

- → avoid interference
- → how many frequencies are required?

For example, using seven frequencies:

- \longrightarrow why does it work?
- \longrightarrow in general, coloring problem

4-coloring of U.S. map:

→ Y. Kanada, Y. Sato; Univ. of Tokyo

CS Building:

First floor frequency reuse:

Second floor frequency reuse:

Ground floor frequency reuse:

Non-uniform covering:

- → directional antenna
- → non-uniform density

Non-uniform frequency allocation:

- → total carrier frequency budget: 35
- → frequency borrowing

uniform frequency allocation

non-uniform frequency allocation