Internet Traffic and QoS

Simplest of all: constant bit rate (CBR)

- \longrightarrow flat is good
- \longrightarrow because predictable
- → e.g., telephone call, real-time MP3 audio
- → approximately "flattish"

Internet data traffic: variable bit rate (VBR)

- → primary: skewed file sizes
- → many mice and a few elephants
- → secondary: compressed real-time/streaming video

What does network traffic look like?

 \longrightarrow first traditional telephone traffic

→ includes voice data carried in IP packets

Deaggregation

Note: when aggregated over time, traffic becomes flat

- \rightarrow "flat is good" rule for QoS provisioning
- \rightarrow simple bandwidth dimensioning
- \rightarrow both happy customers (QoS) and providers (efficient resource usage)

What about Internet data traffic?

- \longrightarrow around 90% is TCP file transfer traffic
- \longrightarrow VoIP and other traffic remains a small minority
- → note: video streaming is VBR
- → video file download is TCP file transfer

Right column: previous telephone traffic

Left column: Internet data traffic

- \rightarrow key difference: doesn't become flat even at large time scales
- \rightarrow traffic stay bursty no matter what the time scale
- \rightarrow self-similar
- \rightarrow also called fractal

Not good for network management and engineering

- \rightarrow cannot make customer and provider both happy
- \rightarrow intrinsic trade-off relationship between QoS and efficiency

Why is traffic so bursty?

- \longrightarrow because of elephants
- \longrightarrow most files are small but a few are very large
- \longrightarrow also 90/10 rule
- \longrightarrow see UNIX file system data

Elephants in action:

 \longrightarrow OC-3 (155 Mbps) interface of Cisco router

Internet QoS mechanisms:

• use per-flow (or user) reservation for high-quality service

- \rightarrow guaranteed service
- use shared service classes (platinum, gold, silver, bronze) for prioritized service
 - \rightarrow differentiated service

Internet standards:

- IETF IntServ
 - \rightarrow RSVP protocol
 - \rightarrow analogous to leasing a line
- IETF DiffServ
 - \rightarrow different types of router behavior
 - \rightarrow AF, EF, Cisco's LLQ for VoIP

Cisco IP router: packet loss rate

- \longrightarrow 8 classes
- \longrightarrow OC-3 (155 Mbps) link
- → varying offered load

Internet QoS:

As with many other traffic protocol/engineering features

- \rightarrow router/switch supported
- \rightarrow not utilized in practice