Internet Traffic and QoS Simplest of all: constant bit rate (CBR) - \longrightarrow flat is good - \longrightarrow because predictable - → e.g., telephone call, real-time MP3 audio - → approximately "flattish" Internet data traffic: variable bit rate (VBR) - → primary: skewed file sizes - → many mice and a few elephants - → secondary: compressed real-time/streaming video What does network traffic look like? \longrightarrow first traditional telephone traffic → includes voice data carried in IP packets Deaggregation Note: when aggregated over time, traffic becomes flat - \rightarrow "flat is good" rule for QoS provisioning - \rightarrow simple bandwidth dimensioning - \rightarrow both happy customers (QoS) and providers (efficient resource usage) What about Internet data traffic? - \longrightarrow around 90% is TCP file transfer traffic - \longrightarrow VoIP and other traffic remains a small minority - → note: video streaming is VBR - → video file download is TCP file transfer Right column: previous telephone traffic Left column: Internet data traffic - \rightarrow key difference: doesn't become flat even at large time scales - \rightarrow traffic stay bursty no matter what the time scale - \rightarrow self-similar - \rightarrow also called fractal Not good for network management and engineering - \rightarrow cannot make customer and provider both happy - \rightarrow intrinsic trade-off relationship between QoS and efficiency Why is traffic so bursty? - \longrightarrow because of elephants - \longrightarrow most files are small but a few are very large - \longrightarrow also 90/10 rule - \longrightarrow see UNIX file system data ## Elephants in action: \longrightarrow OC-3 (155 Mbps) interface of Cisco router ### Internet QoS mechanisms: • use per-flow (or user) reservation for high-quality service - \rightarrow guaranteed service - use shared service classes (platinum, gold, silver, bronze) for prioritized service - \rightarrow differentiated service #### Internet standards: - IETF IntServ - \rightarrow RSVP protocol - \rightarrow analogous to leasing a line - IETF DiffServ - \rightarrow different types of router behavior - \rightarrow AF, EF, Cisco's LLQ for VoIP ## Cisco IP router: packet loss rate - \longrightarrow 8 classes - \longrightarrow OC-3 (155 Mbps) link - → varying offered load # Internet QoS: As with many other traffic protocol/engineering features - \rightarrow router/switch supported - \rightarrow not utilized in practice