Route or path: criteria of goodness

- Hop count
- Delay
- Bandwidth
- Loss rate

Composition of goodness metric:

 \longrightarrow quality of end-to-end path

- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate

Goodness of routing:

- \longrightarrow assume N users or sessions
- \longrightarrow suppose path metric is delay

Two approaches:

- system optimal routing
 - \rightarrow choose paths to minimize $\frac{1}{N} \sum_{i=1}^{N} D_i$
 - \rightarrow good for the system as a whole
- user optimal routing
 - \rightarrow each user *i* chooses path to minimize D_i
 - \rightarrow selfish route selections by each user
 - \rightarrow end result may not be good for system as a whole

Pros/cons:

- system optimal routing:
 - $-\operatorname{good}$: minimizes delay for the system as a whole
 - bad: complex and difficult to scale up
- user optimal routing:
 - good: simple
 - bad: may not make efficient use of resources
 - \rightarrow low utilization
 - \rightarrow recall "tragedy of commons" in congestion control

Two pitfalls of user optimal routing:

- fluttering or ping pong effect
- Braess paradox

 \rightarrow adding more resources can make things worse

Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

- Assume p is a shortest path from S to D $\rightarrow S \xrightarrow{p} D$
- Pick any intermediate node X on the path
- Consider the two segments p_1 and p_2 $\rightarrow S \xrightarrow{p_1} X \xrightarrow{p_2} D$
- The path p_1 from S to X is a shortest path, and so is the path p_2 from X to D

 \longrightarrow leads to Dijkstra's algorithm

 \rightarrow suggests algorithm for finding shortest path

Leads to Dijkstra's shortest-path algorithm:

 \rightarrow single-source all-destination

Features:

- nunning time: $O(n^2)$ time complexity $\rightarrow n$: number of nodes
- if heap is used: $O(|E| \log |V|)$

 $\rightarrow O(n \log n)$ if |E| = O(n)

- can also be run "backwards"
 - \rightarrow start from destination D and go to all sources
 - \rightarrow a variant used in inter-domain routing
 - \rightarrow forward version: used in intra-domain routing
- \bullet source S requires global link distance knowledge
 - \rightarrow centralized algorithm (center: source S)
 - \rightarrow every router runs Dijkstra with itself as source
 - \rightarrow lots of broadcast management packets

- Internet protocol implementation
 - \rightarrow OSPF (Open Shortest Path First)
 - \rightarrow also called link state algorithm
 - \rightarrow broadcast protocol
- builds minimum spanning tree rooted at S:
 - \rightarrow to all destinations
 - \rightarrow if select destination: called multicasting
 - \rightarrow multicast group
 - \rightarrow standardized feature of IETF but not actively utilized on Internet
 - \rightarrow complexity including group membership management

Distributed/decentralized shortest path algorithm:

- \longrightarrow Bellman-Ford algorithm
- \longrightarrow based on shortest path decomposition property

Key procedure:

- Each node X maintains current shortest distance to all other nodes
 - \rightarrow a distance vector
- Each node advertises to neighbors its current best distance estimates

 \rightarrow i.e., neighbors exchange distance vectors

- Each node updates shortest paths based on neighbors' advertised information
 - \rightarrow same update criterion as Dijkstra's algorithm

Features:

- running time: $O(n^3)$
- each source or router only talks to neighbors
 - \rightarrow local interaction
 - \rightarrow no need to send update if no change
 - \rightarrow if change, entire distance vector must be sent
- knows shortest distance, but not path
 - \rightarrow just the next hop is known
- elegant but additional issues compared to Dijkstra's algorithm
 - \rightarrow e.g., stability
- Internet protocol implementation
 - \rightarrow RIP (Routing Information Protocol)

QoS routing:

Given two or more performance metrics—e.g., delay and bandwidth—find path with delay less than target delay D(e.g., 100 ms) and bandwidth greater than target bandwidth B (e.g., 1.5 Mbps)

- \longrightarrow from shortest path to best QoS path
- \longrightarrow multi-dimensional QoS metric
- \longrightarrow other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

- \bullet enumerate all possible paths
- rank them

• If there are n nodes, there can be up to

$$\frac{n(n-1)}{2}$$

undirected links

 \bullet Hence, from source S there can be up to

$$(n-1)(n-2)\cdots 321 = (n-1)!$$

paths

• By Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

- \rightarrow superexponential
- \rightarrow too many for brute-force

Is there a more clever or better algorithm?

- $\longrightarrow~$ as of Apr. 25, 2011: unknown
- \longrightarrow specifically: QoS routing is NP-hard
- \longrightarrow strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete

- \longrightarrow e.g., scheduling, control, crypto, . . .
- \longrightarrow "P = NP" problem
- \longrightarrow one of the hardest problems in science

In practice: doesn't matter too much for QoS routing

- \longrightarrow little demand for very good algorithm
- \longrightarrow roughly OK is fine
- \longrightarrow intra-domain: short paths
- \longrightarrow inter-domain: shortness plus other factors
- \longrightarrow policy routing

- \longrightarrow meaning of "policy" is not precisely defined
- \longrightarrow almost anything goes

Criteria include:

- Performance
 - \rightarrow e.g., short paths
- Trust
 - \rightarrow what is "trust"?
- Economics
 - \rightarrow pricing
- Politics, etc.

Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 - \rightarrow also called distance vector routing
 - \rightarrow metric: hop count

 $\rightarrow \text{UDP}$

- \rightarrow nearest neighbor advertisement
- \rightarrow popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
 - \rightarrow also called link state
 - \rightarrow metric: average delay
 - \rightarrow directly over IP: protocol number 89
 - \rightarrow broadcasting via flooding
 - \rightarrow popular in larger intra-domain networks

- IS-IS: intra-domain, Dijkstra
 - \rightarrow directly over link layer (e.g., Ethernet)
 - \rightarrow also available over IP (more recent)
 - \rightarrow flooding
 - \rightarrow popular in larger intra-domain networks

- \rightarrow "peering" between two domains
- \longrightarrow typical: customer-provider relationship
- \longrightarrow in some cases: equals (true peers)
- \longrightarrow Internet exchanges: multiple domains meet up

- CIDR addressing
 - \rightarrow i.e., a.b.c.d/x
 - \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 - \rightarrow check at www.iana.org (e.g., ARIN for US)
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - \rightarrow meaning of "shortest": delay, router hop, AS hop
 - \rightarrow mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

 \longrightarrow BGP update message propagation

BGP update message format:

 $ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1; a.b.c.d/x$

Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

 \longrightarrow called path vector

 \longrightarrow also AS-PATH

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537
- AT&T: 7018

- if multiple AS-PATHs to target AS are known, choose one based on policy
 - \rightarrow e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
 - \rightarrow also subject to policy
 - \rightarrow no obligation to advertise!
 - \rightarrow specifics depend on bilateral contract (SLA)
- SLA (service level agreement):
 - \longrightarrow bandwidth (e.g., 1 Gbps)
 - \longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)
 - \longrightarrow also peak vs. average
 - \longrightarrow pricing (e.g., 1 Mbps: below \$100)
 - \longrightarrow availability, etc.

Performance

Route update frequency:

- \longrightarrow routing table stability vs. responsiveness
- \longrightarrow rule: not too frequently
- \longrightarrow 30 seconds
- \longrightarrow stability wins
- \longrightarrow hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

- \longrightarrow selfishness (e.g., fluttering)
- \longrightarrow BGP's vector path routing: inherently unstable
- \longrightarrow more common: slow convergence
- \longrightarrow target of denial-of-service (DoS) attack

Route amplification:

- \longrightarrow shortest AS path \neq shortest router path
- \longrightarrow e.g., may be several router hops longer
- \longrightarrow AS graph vs. router graph
- \longrightarrow policy: company in Denmark

Route asymmetry:

- \longrightarrow routes are not symmetric
- \longrightarrow estimate: > 50%
- \longrightarrow mainly artifact of inter-domain policy routing
- \longrightarrow various performance implications
- \longrightarrow source traceback

Black holes:

- \longrightarrow persistent unreachable destination prefixes
- \longrightarrow BGP routing problems
- \longrightarrow further aggrevated by DNS