Route or path: criteria of goodness

- Hop count
- Delay
- Bandwidth
- Loss rate

Composition of goodness metric:
\longrightarrow quality of end-to-end path

- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate

Goodness of routing:
\longrightarrow assume N users or sessions
$\longrightarrow \quad$ suppose path metric is delay

Two approaches:

- system optimal routing
\rightarrow choose paths to minimize $\frac{1}{N} \sum_{i=1}^{N} D_{i}$
\rightarrow good for the system as a whole
- user optimal routing
\rightarrow each user i chooses path to minimize D_{i}
\rightarrow selfish route selections by each user
\rightarrow end result may not be good for system as a whole

Pros/cons:

- system optimal routing:
- good: minimizes delay for the system as a whole
- bad: complex and difficult to scale up
- user optimal routing:
- good: simple
- bad: may not make efficient use of resources
\rightarrow low utilization
\rightarrow recall "tragedy of commons" in congestion control

Two pitfalls of user optimal routing:

- fluttering or ping pong effect
- Braess paradox
\rightarrow adding more resources can make things worse

Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

- Assume p is a shortest path from S to D
$\rightarrow S \xrightarrow{p} D$
- Pick any intermediate node X on the path
- Consider the two segments p_{1} and p_{2}
$\rightarrow S \xrightarrow{p_{1}} X \xrightarrow{p_{2}} D$
- The path p_{1} from S to X is a shortest path, and so is the path p_{2} from X to D
\longrightarrow leads to Dijkstra's algorithm

Illustration:

\rightarrow suggests algorithm for finding shortest path

Leads to Dijkstra's shortest-path algorithm:
\rightarrow single-source all-destination

Features:

- nunning time: $O\left(n^{2}\right)$ time complexity
$\rightarrow n$: number of nodes
- if heap is used: $O(|E| \log |V|)$
$\rightarrow O(n \log n)$ if $|E|=O(n)$
- can also be run "backwards"
\rightarrow start from destination D and go to all sources
\rightarrow a variant used in inter-domain routing
\rightarrow forward version: used in intra-domain routing
- source S requires global link distance knowledge
\rightarrow centralized algorithm (center: source S)
\rightarrow every router runs Dijkstra with itself as source
\rightarrow lots of broadcast management packets
- Internet protocol implementation
\rightarrow OSPF (Open Shortest Path First)
\rightarrow also called link state algorithm
\rightarrow broadcast protocol
- builds minimum spanning tree rooted at S :
\rightarrow to all destinations
\rightarrow if select destination: called multicasting
\rightarrow multicast group
\rightarrow standardized feature of IETF but not actively utilized on Internet
\rightarrow complexity including group membership management

Distributed/decentralized shortest path algorithm:

\longrightarrow Bellman-Ford algorithm
\longrightarrow based on shortest path decomposition property

Key procedure:

- Each node X maintains current shortest distance to all other nodes
\rightarrow a distance vector
- Each node advertises to neighbors its current best distance estimates
\rightarrow i.e., neighbors exchange distance vectors
- Each node updates shortest paths based on neighbors' advertised information
\rightarrow same update criterion as Dijkstra's algorithm

Features:

- running time: $O\left(n^{3}\right)$
- each source or router only talks to neighbors
\rightarrow local interaction
\rightarrow no need to send update if no change
\rightarrow if change, entire distance vector must be sent
- knows shortest distance, but not path
\rightarrow just the next hop is known
- elegant but additional issues compared to Dijkstra's algorithm
\rightarrow e.g., stability
- Internet protocol implementation
\rightarrow RIP (Routing Information Protocol)

QoS routing:

Given two or more performance metrics e.g., delay and bandwidth - find path with delay less than target delay D (e.g., 100 ms) and bandwidth greater than target bandwidth B (e.g., 1.5 Mbps$)$
\longrightarrow from shortest path to best QoS path
\longrightarrow multi-dimensional QoS metric
\longrightarrow other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?
Brute-force

- enumerate all possible paths
- rank them

How many paths are there:

- If there are n nodes, there can be up to

$$
\frac{n(n-1)}{2}
$$

undirected links

- Hence, from source S there can be up to

$$
(n-1)(n-2) \cdots 321=(n-1)!
$$

paths

- By Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

\rightarrow superexponential
\rightarrow too many for brute-force

Is there a more clever or better algorithm?
\longrightarrow as of Apr. 25, 2011: unknown
\longrightarrow specifically: QoS routing is NP-hard
\longrightarrow strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete
\longrightarrow e.g., scheduling, control, crypto, ...
\longrightarrow "P $=$ NP" problem
\longrightarrow one of the hardest problems in science
In practice: doesn't matter too much for QoS routing
\longrightarrow little demand for very good algorithm
\longrightarrow roughly OK is fine
\longrightarrow intra-domain: short paths
\longrightarrow inter-domain: shortness plus other factors
\longrightarrow policy routing

Policy routing:

\longrightarrow meaning of "policy" is not precisely defined
\longrightarrow almost anything goes

Criteria include:

- Performance
\rightarrow e.g., short paths
- Trust
\rightarrow what is "trust"?
- Economics
\rightarrow pricing
- Politics, etc.

Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
\rightarrow also called distance vector routing
\rightarrow metric: hop count
\rightarrow UDP
\rightarrow nearest neighbor advertisement
\rightarrow popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
\rightarrow also called link state
\rightarrow metric: average delay
\rightarrow directly over IP: protocol number 89
\rightarrow broadcasting via flooding
\rightarrow popular in larger intra-domain networks
- IS-IS: intra-domain, Dijkstra
\rightarrow directly over link layer (e.g., Ethernet)
\rightarrow also available over IP (more recent)
\rightarrow flooding
\rightarrow popular in larger intra-domain networks

BGP (Border Gateway Protocol):
\longrightarrow inter-domain routing
Autonomous System A
Autonomous System B

Border Routers
\longrightarrow "peering" between two domains
\longrightarrow typical: customer-provider relationship
\longrightarrow in some cases: equals (true peers)
\longrightarrow Internet exchanges: multiple domains meet up

- CIDR addressing
\rightarrow i.e., a.b.c.d/x
\rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
\rightarrow check at www. iana.org (e.g., ARIN for US)
- Metric: policy
\rightarrow e.g., shortest-path, trust, pricing
\rightarrow meaning of "shortest": delay, router hop, AS hop
\rightarrow mechanism: path vector routing
\rightarrow BPG update message

BGP route update:
\longrightarrow BGP update message propagation
BGP update message format:

$$
\operatorname{ASN} A_{k} \rightarrow \cdots \rightarrow \mathrm{ASN} A_{2} \rightarrow \operatorname{ASN} A_{1} ; \text { a.b.c.d/x }
$$

Meaning: ASN A_{1} (with CIDR address a.b.c.d/x) can be reached through indicated path
\longrightarrow called path vector
\longrightarrow also AS-PATH
Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537
- AT\&T: 7018

Policy:

- if multiple AS-PATHs to target AS are known, choose one based on policy
\rightarrow e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
\rightarrow also subject to policy
\rightarrow no obligation to advertise!
\rightarrow specifics depend on bilateral contract (SLA)

SLA (service level agreement):
\longrightarrow bandwidth (e.g., 1 Gbps)
\longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05\%)
\longrightarrow also peak vs. average
\longrightarrow pricing (e.g., 1 Mbps: below $\$ 100$)
\longrightarrow availability, etc.

Example:

Performance

Route update frequency:
\longrightarrow routing table stability vs. responsiveness
\longrightarrow rule: not too frequently
$\longrightarrow 30$ seconds
\longrightarrow stability wins
\longrightarrow hard lesson learned from the past (sub-second)
\longrightarrow legacy: TTL

Other factors for route instability:
\longrightarrow selfishness (e.g., fluttering)
\longrightarrow BGP's vector path routing: inherently unstable
\longrightarrow more common: slow convergence
\longrightarrow target of denial-of-service (DoS) attack

Route amplification:
\longrightarrow shortest AS path \neq shortest router path
\longrightarrow e.g., may be several router hops longer
\longrightarrow AS graph vs. router graph
\longrightarrow policy: company in Denmark

Route asymmetry:
\longrightarrow routes are not symmetric
\longrightarrow estimate: $>50 \%$
\longrightarrow mainly artifact of inter-domain policy routing
\longrightarrow various performance implications
\longrightarrow source traceback

Black holes:
\longrightarrow persistent unreachable destination prefixes
\longrightarrow BGP routing problems
\longrightarrow further aggrevated by DNS

