
CS 422 Park

Routing

Problem: Given more than one path from source to des-

tination, which one to take?

Features:

• Architecture

• Algorithms

• Implementation

• Performance



CS 422 Park

Architecture

Hierarchical routing:

−→ Internet: intra-domain vs. inter-domain routing

−→ separate decision making

Stub

Tier 2

Tier 1

Tier 3

Tier 2

Domain FDomain E

Domain D

Domain B

Domain C

Domain A

Stub



CS 422 Park

Granularity

• Router

• Domain: autonomous system (AS)

→ 16 bit identifier

Network representation

• Router graph

• AS graph

Customer Provider

Stub AS

Stub AS

Transit AS

Transit AS

Transit AS

Transit AS



CS 422 Park

Route or path: criteria of goodness

• Hop count

• Delay

→ composed of three parts

• Bandwidth

→ available bandwidth

• Loss rate

Composition of goodness metric:

−→ quality of end-to-end path

• Additive: hop count, delay

• Min: bandwidth

• Multiplicative: loss rate



CS 422 Park

Goodness of routing:

−→ assume N users or sessions

−→ suppose path metric is delay

• System optimal routing

→ choose paths to minimize
∑N

i=1 Di

• User optimal routing

→ each user i chooses path to minimize Di

→ selfish actions



CS 422 Park

Pros/cons:

• System optimal routing:

– Good: minimizes delay for the system as a whole

– Bad: complex and difficult to scale

• User optimal routing:

– Good: simple

– Bad: may not make efficient use of resources

→ utilization

Some pitfalls of user optimal routing:

−→ stemming from selfishness

• Fluttering or ping pong effect

• Braess paradox



CS 422 Park

Braess paradox example:

• 6 users sending 1 Mbps traffic

• Delay on shared link increases with traffic volume x

• Users make routing decisions one after the other

User 1
User 2
User 3
User 4
User 5
User 6

5x + 1

5x + 1

x + 25

x + 25

A

B

C

D

• 3 users will take A→ B → D

• 3 users will take A→ C → D

• total delay per user: (5 · 3 + 1) + (3 + 25) = 44



CS 422 Park

Resource provisioning:

−→ high bandwidth link is added between B and C

User 1
User 2
User 3
User 4
User 5
User 6

5x + 1

5x + 1

x + 25

x + 25

A

B

C

D
1

• User 1: A→ B → C → D (13)

• User 2: A→ B → C → D (23)

• User 3: A→ B → C → D (33)

• User 4: A→ B → C → D (43)

• User 5: A→ B → D (52)

• User 6: A→ C → D (52)



CS 422 Park

Adding extra link should improve things, but has the

opposite effect

−→ paradox possible due to selfishness

−→ D. Braess (1969)

−→ cannot arise in system optimal routing

−→ i.e., cooperative routing

Adam Smith: let the “invisible hand” do its work

−→ doesn’t always lead to best outcome

−→ capitalism vs. communism

Modus operandi of the Internet: user optimal routing

−→ simplicity wins the day



CS 422 Park

Algorithms

Find short, in particular, shortest paths from source to

destination.

Key observation on shortest paths:

• Assume p is a shortest path from S to D

→ S
pÃ D

• Pick any intermediate node X on the path

• Consider the two segments p1 and p2

→ S
p1Ã X

p2Ã D

• The path p1 from S to X is a shortest path, and so

is the path p2 from X to D



CS 422 Park

Illustration:

p
1

S D

shortest path

shortest path shortest path

S D
X

p

p
2

−→ reverse implication need not hold

−→ suggests algorithm for finding shortest path



CS 422 Park

Procedure: Grow a routing tree T rooted at source S

−→ initially T only contains S

1. Find a node X with shortest path from S

→ there may be more than one such node

→ add X (and path S
pÃ X) to routing tree T

2. Find node Y with shortest path from T
→ update existing paths if going through Y is shorter

→ uses shortest path decomposition property

3. Repeat step two until no more nodes left to add

Observations:

−→ once node is added, it’s final (no backtracking)

−→ builds minimum spanning tree routed at S

−→ Dijkstra’s algorithm



CS 422 Park

Remarks:

• Running time: O(n2) time complexity

→ n: number of nodes

• Can also be run “backwards”

→ start from destination D and go to all sources

→ single-destination/all-source shortest path

• Source S requires global link distance knowledge

→ centralized algorithm (center: source S)

→ every router runs Dijkstra with itself as source



CS 422 Park

• Internet protocol implementation

→ OSPF (Open Shortest Path First)

→ link state algorithm

• Minimum spanning tree routed at S:

→ multicasting: multicast tree

→ standardized but not implemented on Internet



CS 422 Park

Distributed/decentralized shortest path algorithm:

−→ Bellman-Ford algorithm

−→ based on shortest path decomposition property

Key procedure:

• Each node X maintains current shortest distance to

all other nodes

→ a distance vector

• Each node advertises to neighbors its current best dis-

tance estimates

• A node X , upon receiving an update from neighbor

Y , performs update: for all Z

d(X,Z)← min{ d(X, Z), d(Y, Z) + `(X, Y ) }

. . . same criterion as Dijkstra’s algorithm



CS 422 Park

Remarks:

• Running time: O(n3)

• Each source or router only talks to neighbors

→ local interaction

→ no need to send update if no change

→ if change, entire distance vector must be sent

• Knows shortest distance, but not path

→ just the next hop is known

• Elegant but additional issues compared to Dijkstra’s

algorithm

→ e.g., stability

• Internet protocol implementation

→ RIP (Routing Information Protocol)


