Routing

Problem: Given more than one path from source to destination, which one to take?

Features:

- Architecture
- Algorithms
- Implementation
- Performance
Architecture

Hierarchical routing:

→ Internet: intra-domain vs. inter-domain routing

→ separate decision making
Ex.: Purdue to east coast (BU)

[109] infobahn:Routing % traceroute csa.bu.edu
traceroute to csa.bu.edu (128.197.12.3), 30 hops max, 40 byte packets
1 cisco5 (128.10.27.250) 3.707 ms 0.616 ms 0.590 ms
2 172.19.60.1 (172.19.60.1) 0.406 ms 0.431 ms 0.520 ms
3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.491 ms 0.600 ms 0.510 ms
4 gigapop.tcom.purdue.edu (192.5.40.134) 9.658 ms 1.966 ms 1.725 ms
5 192.12.206.249 (192.12.206.249) 1.715 ms 3.381 ms 1.749 ms
6 chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 5.669 ms 8.319 ms 5.601 ms
7 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 25.626 ms 25.664 ms 25.621 ms
8 noxgs1-P0-6-0-NoX-NoX.nox.org (192.5.89.9) 30.634 ms 30.768 ms 30.722 ms
9 192.5.89.202 (192.5.89.202) 31.128 ms 31.045 ms 31.082 ms
10 cumm111-cgw-extgw.bu.edu (128.197.254.121) 31.287 ms 31.152 ms 31.146 ms
11 cumm111-dgw-cumm111.bu.edu (128.197.254.162) 31.224 ms 31.192 ms 31.308 ms
12 csa.bu.edu (128.197.12.3) 31.529 ms 31.243 ms 31.367 ms

Ex.: Purdue to west coast (Cisco)

[112] infobahn:Routing % traceroute www.cisco.com
traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte packets
1 cisco5 (128.10.27.250) 0.865 ms 0.598 ms 1.282 ms
2 172.19.60.1 (172.19.60.1) 0.518 ms 0.379 ms 0.405 ms
3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.687 ms 0.551 ms 0.551 ms
4 switch-data.tcom.purdue.edu (192.5.40.34) 3.496 ms 3.523 ms 2.750 ms
5 so-2-3-0-0.gar2.Chicago1.Level3.net (67.72.124.9) 8.114 ms 20.181 ms 8.512 ms
6 so-3-3-0.bbr1.Chicago1.Level3.net (4.68.96.41) 11.543 ms 9.079 ms 8.239 ms
7 ae-0-bbr1.SanJose1.Level3.net (64.159.1.129) 62.319 ms as-1-bbr2.SanJose1.Level3.net
8 ge-11-0.ipcolo1.SanJose1.Level3.net (4.68.123.41) 68.180 ms ge-7-1.ipcolo1.SanJose1.Level3.net
9 p1-0.cisco.bbnplanet.net (4.0.26.14) 75.006 ms 72.557 ms 70.377 ms
10 sjce-dmzbb-gw1.cisco.com (128.107.239.53) 66.075 ms 69.223 ms 68.350 ms
11 sjck-dmzd-gw1.cisco.com (128.107.224.69) 65.650 ms 74.358 ms 69.952 ms
12 "C
Three levels: LAN, intra-domain, and inter-domain
Inter-domain topology:

→ each dot (or node) is a domain (e.g., Purdue)
→ called autonomous system (AS): 16-bit ID
Inter-domain connectivity of Purdue:

- Level3 (AS 3356) \rightarrow INDIANAGIGAPOP (AS 19782)\rightarrow Purdue (AS 17)
- Internet2/Abilene (AS 11537) \rightarrow INDIANAGIGAPOP (AS 19782) \rightarrow Purdue (AS 17)

\rightarrow changes over time (e.g., economic reasons)

The Indy GigaPoP has its own AS number (19782).

\rightarrow part of I-Light (Indiana state-wide project)

\rightarrow located at IUPUI, connects Purdue & IU
Level3 backbone network: www.level3.com

→ 10 Gbps (or slower) backbone (same as Purdue)
→ same as Purdue CS!
→ next step: 100 Gbps backbone (a few years away)
→ in the meantime: LAG (link aggregation group)
Abilene/Internet2 backbone: www.internet2.edu
Granularity of routing network:

- Router
- Domain: autonomous system
 - → 16 bit identifier ASN
 - → assigned by IANA along with IP prefix block (CIDR)

Network topology (i.e., map/connectivity):

- Router graph
 - → node: router
 - → edge: physical link between two routers
- AS graph
 - → node: AS
 - → edge: physical link between 2 or more border routers
 - → sometimes at exchange point or network
Router type:

- access router
- border router
- backbone router

AS type:

- stub AS
 → no forwarding
 → may be multi-homed (more than one provider)
- transit AS
 → tier-1: global reachability & no provider above
 → tier-2 or tier-3: providers above
Inter-AS relationship: bilateral

- customer-provider: customer subscribes BW from provider
 → most common
 → customer can reach provider’s reachable IP space

- peering:
 → only the peer’s IP address and below
 → the peer’s provider’s address space: invisible
Common peering:

• among tier-1 providers
 → ensures global reachability
 → socio-economic self-organization
 → less regulated than telephony

• among tier-2 providers
 → regional providers
 → economic factors

• among stubs
 → economic factors
 → e.g., content provider & access ("eyeball") provider
 → e.g., Time Warner & AOL
Route or path: criteria of goodness

- Hop count
- Delay
- Bandwidth
- Loss rate

Composition of goodness metric:

\[\rightarrow \text{ quality of end-to-end path} \]

- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate
Goodness of routing:

→ assume N users or sessions

→ suppose path metric is delay

• System optimal routing
 → choose paths to minimize $\frac{1}{N} \sum_{i=1}^{N} D_i$

• User optimal routing
 → each user i chooses path to minimize D_i

→ selfish actions
Pros/cons:

• System optimal routing:
 – Good: minimizes delay for the system as a whole
 – Bad: complex and difficult to scale up

• User optimal routing:
 – Good: simple
 – Bad: may not make efficient use of resources
 → utilization

Some pitfalls of user optimal routing:
 → stemming from selfishness

• Fluttering or ping pong effect

• Braess paradox
 → adding more resources makes things worse
Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

• Assume p is a shortest path from S to D

 $\rightarrow S \xrightarrow{p} D$

• Pick any intermediate node X on the path

• Consider the two segments p_1 and p_2

 $\rightarrow S \xrightarrow{p_1} X \xrightarrow{p_2} D$

• The path p_1 from S to X is a shortest path, and so is the path p_2 from X to D
Illustration:

\[S \xrightarrow{p} D \]

\textit{shortest path}

\[S \xrightarrow{p_1} X \xrightarrow{p_2} D \]

\textit{shortest path} \hspace{1cm} \textit{shortest path}

→ reverse implication need not hold

→ suggests algorithm for finding shortest path
Procedure: Grow a routing tree T rooted at source S

$\quad\rightarrow$ initially T only contains S

1. Find a node X with shortest path from S
$\quad\rightarrow$ there may be more than one such node
$\quad\rightarrow$ add X (and path $S \xrightarrow{p} X$) to routing tree T

2. Find node $Y \notin T$ with shortest path from S
$\quad\rightarrow$ update existing paths if going through Y is shorter
$\quad\rightarrow$ i.e., $\min\{d(S, Z), d(S, Y) + \ell(Y, Z)\}$
$\quad\rightarrow$ need only check for $Z \notin T$

3. Repeat step two until no more nodes left to add

Observations:

$\quad\rightarrow$ once node is added, it’s final (no backtracking)
$\quad\rightarrow$ builds minimum spanning tree routed at S
$\quad\rightarrow$ Dijkstra’s algorithm
Remarks:

- Running time: $O(n^2)$ time complexity
 $→ n$: number of nodes

- If heap is used: $O(|E| \log |V|)$
 $→$ good for sparse graphs: $|E| \ll n^2$
 $→$ e.g., if linear: $O(n \log n)$

- Can also be run “backwards”
 $→$ start from destination D and go to all sources
 $→$ a variant used in inter-domain routing
 $→$ forward version: used in intra-domain routing

- Source S requires global link distance knowledge
 $→$ centralized algorithm (center: source S)
 $→$ every router runs Dijkstra with itself as source
• Internet protocol implementation
 → OSPF (Open Shortest Path First)
 → link state algorithm
 → broadcast protocol

• Minimum spanning tree routed at S:
 → multicasting: multicast tree
 → standardized but not implemented on Internet
Distributed/decentralized shortest path algorithm:

\[\rightarrow \text{ Bellman-Ford algorithm} \]

\[\rightarrow \text{ based on shortest path decomposition property} \]

Key procedure:

- Each node X maintains current shortest distance to all other nodes
 \[\rightarrow \text{ a distance vector} \]
- Each node advertises to neighbors its current best distance estimates
 \[\rightarrow \text{ i.e., neighbors exchange distance vectors} \]
- Node X, upon receiving an update from neighbor Y, performs update: for all Z
 \[d(X, Z) \leftarrow \min\{ d(X, Z), d(Y, Z) + \ell(X, Y) \} \]
 \[\ldots \text{ same criterion as Dijkstra’s algorithm} \]
Remarks:

• Running time: $O(n^3)$

• Each source or router only talks to neighbors
 → local interaction
 → no need to send update if no change
 → if change, entire distance vector must be sent

• Knows shortest distance, but not path
 → just the next hop is known

• Elegant but additional issues compared to Dijkstra’s algorithm
 → e.g., stability

• Internet protocol implementation
 → RIP (Routing Information Protocol)
QoS routing:

Given two or more performance metrics—e.g., delay and bandwidth—find path with delay less than target delay D (e.g., 100 ms) and bandwidth greater than target bandwidth B (e.g., 1.5 Mbps)

\rightarrow from shortest path to best QoS path

\rightarrow multi-dimensional QoS metric

\rightarrow other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

- Enumerate all possible paths
- Rank them
How many paths are there:

- If there are n nodes, there can be up to
 \[\frac{n(n - 1)}{2} \]
 undirected links

- Hence, from source S there can be up to
 \[(n - 1)(n - 2) \cdots 3 \cdot 2 \cdot 1 = (n - 1)!\]
 paths

- By Stirling’s formula
 \[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \]
 \rightarrow superexponential
 \rightarrow too many for brute-force
Is there a more clever or better algorithm?

→ as of Nov. 12, 2007: unknown
→ specifically: QoS routing is NP-complete
→ strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete

→ e.g., scheduling, control, . . .
→ “P = NP” problem
→ one of the hardest problems in science ever

Doesn’t matter too much for QoS routing

→ little demand for very good algorithm
→ roughly ok is fine
→ intra-domain: short paths
→ inter-domain: other factors (“policy”)
Policy routing:

→ policy is not precisely defined

→ almost anything goes

Routing criteria include

• Performance
 → e.g., short paths

• Trust
 → what in the world is “trust”?

• Economics
 → pricing
 → flexibility through multiple providers

• Politics, social issues, etc.

→ no good understanding of “policy” to date

→ anecdotal