Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 → also called “distance vector”
 → metric: hop count
 → UDP
 → nearest neighbor advertisement
 → popular in small intra-domain networks

- OSPF (v1 and v2): intra-domain, Dijkstra
 → also called “link state”
 → metric: average delay
 → directly over IP: protocol number 89
 → broadcasting via flooding
 → popular in larger intra-domain networks
• IS-IS: intra-domain, Dijkstra
 → “link state”
 → directly over link layer (e.g., Ethernet)
 → more recently: also available over IP
 → flooding
 → popular in larger intra-domain networks

• Source routing: packet specifies path
 → implemented in various link layer protocols
 → ATM call set-up: circuit-switching
 → IPv4/v6: option field
 → mostly disabled
 → large ISPs: sometimes used internally for diagnosis
BGP (Border Gateway Protocol):

• Inter-domain routing
 → border routers vs. backbone routers

→ “peering” between two AS’s
→ includes customer-provider relationship
→ exchanges: peering between multiple AS’s
• CIDR addressing
 → i.e., $a.b.c.d/x$
 → Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
 → check at www.iana.org (e.g., ARIN for US)
• Route table look-up: maximum prefix matching
 → e.g., entries: 128.10.0.0/16 and 128.10.27.0/24
 → destination address 128.10.27.20 matches 128.10.27.0/24 best
• Metric: policy
 → e.g., shortest-path, trust, pricing
 → meaning of “shortest”: delay, router hop, AS hop
 → route amplification: shortest AS path \neq shortest router path
 → mechanism: path vector routing
 → BPG update message
BGP route update:

\[\rightarrow \quad \text{BGP update message propagation} \]

BGP update message:

\[\text{ASN}_k \rightarrow \cdots \rightarrow \text{ASN}_2 \rightarrow \text{ASN}_1; a.b.c.d/x \]

Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

\[\rightarrow \quad \text{“path vector”} \]

\[\rightarrow \quad \text{called AS-PATH} \]

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka “Internet2”): 11537
Policy:

- if multiple AS-PATHs to target AS are known, choose one based on policy

 → e.g., shortest AS path length, cheapest, least worrisome

- advertise to neighbors target AS’s reachability

 → also subject to policy

 → no obligation to advertise

 → specifics depend on bilateral contract (SLA)

SLA (service level agreement):

 → bandwidth (e.g., 10 Gbps, 1 Gbps

 → delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)

 → pricing (e.g., 1 Mbps: below $100)

 → availability (e.g., 99.999%)

 → etc.
BGP-update procedure:

Upon receiving BGP update message from neighbor to target AS A

1. Store AS-PATH reachability info for target A
 \rightarrow AdjIn table (one per neighbor)

2. Determine if new path to A should be adopted
 \rightarrow policy
 \rightarrow path should be unique
 \rightarrow BPG table (locRIB) & IP routing table update
 \rightarrow inter-domain: IP table update from BGP

3. Determine who to advertise reachability for target A
 \rightarrow selective advertisement

Note: if shortest-path then same as Dijkstra in-reverse
BGP-withdrawal:

1. Use BGP keep-alive message to sense neighbor
 → timeout

2. If keep-alive does not arrive within timeout, assume node is down

3. Send BGP withdraw message for neighbor who is deemed down if no alternative path exists; else send BGP update message
 → may trigger further updates

Other BGP features:

• BGP runs over TCP
 → port number 179
 → i.e., “application layer” protocol

• BPG-4 (1995); secure BGP
 → S-BGP: not implemented yet ("BBN vs. Cisco")
Performance

Route update frequency:

→ routing table stability vs. responsiveness
→ rule: not too frequently
→ 30 seconds
→ stability wins
→ hard lesson learned from the past (sub-second)
→ legacy: TTL

Other factors for route instability:

→ selfishness (e.g., fluttering)
→ BGP’s vector path routing: inherently unstable
→ more common: slow convergence
→ target of denial-of-service (DoS) attack
Route amplification:

→ shortest AS path ≠ shortest router path
→ e.g., may be several router hops longer
→ AS graph vs. router graph
→ inter- vs. intra-domain routing: separate subsystems
→ policy: company in Denmark

Route asymmetry:

→ routes are not symmetric
→ estimate: > 50%
→ mainly artifact of inter-domain policy routing
→ various performance implications
→ source traceback
Black holes:

\[\rightarrow \] persistent unreachable destination prefixes
\[\rightarrow \] BGP routing problems
\[\rightarrow \] further aggravated by DNS
\[\rightarrow \] purely application layer: end system problem
Topology:

\[\rightarrow \text{ who is connected to whom}\]

\[\rightarrow \text{ Internet AS graph (segment of Jan. 2002)}\]
Contrast with random graph: same number of nodes and edges

- random graph: choose each link with prob. p
- independently: prob. of k neighbors is p^k
Ex.: Delta Airlines route map

→ by design: hub and backbone architecture
→ mixture of centralized/decentralized design
→ small system: centralized is good
→ large system: decentralization necessary
Small system with centralized design:

→ star topology

→ e.g., Southwest Airlines

→ essentially two conjoined star topologies

→ a matter of load balancing

→ backbone topology: trivial